88 resultados para repeat offender
Resumo:
The electrochemical polymerization of 0.01 M aniline in 1 M H2SO4 aqueous solution on roughened Au surface modified with a self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) has been investigated by in situ electrochemical surface-enhanced Raman scattering spectroscopy (SERS). The repeat units and possible structures of the electrodeposited polyaniline (PANI) film were proposed; i.e., aniline monomer is coupled in head-to-tail predominately at the C-4 of aniline and amine of 4-ATP, and the thin PANI film is orientated vertically to substrate surface. Simultaneous Raman spectra during potential scanning indicate clearly that the ultrathin PANI film (in initial growth of the film) consists of semiquinone radical cation (IP+), para-disubstituted benzene (IP and IP+) and quinine diimine (NP) while it is oxidized, and without quinine diimine and semiquinone radical cation while reduced. Meanwhile, the results confirm that 4-ATP monolayer shows a strong promotion on the electrodeposition of aniline monomer, and a possible polymerization mechanism was proposed.
Resumo:
Calf-thymus DNA-incorporated bilayer lipid membranes supported on a glassy carbon (GC) electrode was prepared by making layers of phosphatidylcholine dimyristoyl (DMPC) on GC electrode. DNA in the BLM was characterized by cyclic voltammetry, IR and AFM, and lipid layers formed on the GC electrode were demonstrated to be a bilayer lipid membrane by electrochemical impedance experiment. In IR and AFM experiments the findings indicated that DNA was incorporated into BLM. The ion channel of bilayer lipid membranes incorporated was studied. The result showed that the ion channel was opened in the presence of the stimulus quinacrine. In the absence of quinacrine the channel was switched. The process can repeat itself many times. The impedance spectroscopy measurements demonstrate that the stimulus quinacrine opens the channel for permeation of marker ion. The mechanism of forming an ion channel was investigated.
Resumo:
Gas transport of H-2, CO2, O-2, N-2, and CH4 in a series of cardo polyarylethers were examined over a temperature range of 30 similar to 100 degreesC. These polymers include three poly(aryletherketone)s, two poly(arylethersulfone)s, and one poly(aryletherketoneketone). It was found that the large length/diameter ratio of the polymer repeat unit for cardo polyaryletherketoneketone (PEKK-C) and strong intermolecular interaction in hydrogen-bonded polyarylethersulfone (PES-H) and hydrogen-bonded polyaryletherketone (PEK-H) resulted in a considerable increase in gas permselectivity. Alkyl-substituted polyaryletherketone (PEK-A), bearing a pendant bulky propyl group on the cardo ring, simultaneously exhibited 62.5% higher H-2 permeability and 59.8% higher H-2/N-2 permselectivity than unmodified poly(aryletherketone) (PEK-C). The causes of the trend were interpreted in terms of chain packing density, segmental motion ability, steric factor, and intermolecular interaction of polymers, together with gas kinetic diameter and critical temperature data.
Resumo:
Crystallographic equivalence of ether and ketone in all para-substituted PAEKs crystallized in form I was discussed in this paper. In a word, crystallographic equivalence between ether and ketone groups is tenable when polymer contains only phenyl rings in the repeat unit. If a polymer contains a diphenyl group in the repeat unit, two cases should be distinguished. In the case of PEDEKK and PEEKDK, crystallographic equivalence between ether and ketone linkages is untenable, However, in the case of PEDK and PEDEKDK, crystallographic equivalence between ether and ketone linkages is still tenable.
Resumo:
The phase transition and transition kinetics of a liquid crystalline copoly(amide-imide) (PAI37), which was synthesized from 70 mol% pyromellitic dianhydride, 30 mol% terephthaloyl chloride, and 1,3-bis[4-(4'-aminophenoxy)cumyl]benzene, was characterized by differential scanning calorimetry, polarized light microscopy, X-ray diffraction, and rheology. PAI37 exhibits a glass transition temperature at 182 degreesC followed by multiple phase transitions. The crystalline phase starts to melt at similar to 220 degreesC and forms smectic C (S-C) phase. The Sc phase transforms into smectic A (S-A) phase when the temperature is above 237 degreesC. The S-C to S-A transition spans a broad temperature range in which the S-A phase vanishes and forms isotropic melt. The WARD fiber pattern of PAI37 pulled from the anisotropic melt revealed an anomalous chain orientation, which was characterized by its layer normal perpendicular to the fiber direction. The transition kinetics for the mesophase and crystalline phase formation was also studied.
Resumo:
A novel conducting polymer poly(phenylene sulfide-tetraaniline) (PPSTEA), with tetraaniline (TA) and phenylene sulfide (PS) segments in its repeat unit, has been synthesized through an acid-induced polycondensation reaction of 4-methylsulfinylphenyl-capped tetraaniline. The new polymer, which represents the first soluble conducting polyaniline analogue with well-defined structure, has high molecular weight, good solubility in common solvents, and good film-forming properties. Its electrical property is analogous to polyaniline. The conductivity of preliminarily, protonic-doping PPSTEA is up to 10 degrees S/cm. This synthetic strategy appears to be general for developing novel well-defined polyaniline analogue containing much longer fixed conjugation length.
Resumo:
Epitaxial crystallization of syndiotactic polypropylene (sPP) on 2-quinoxalinol (2-Quin) yields, in the lower part of the crystallization range, the less common and metastable form II based on the packing of isochiral helices, rather than the stable antichiral form I. The contact plane is (110)(II). Form II exits only as a thin layer (< 50 nm) near the substrate surface. During further growth away from the surface, a transition takes place to the disordered form I, observed in "conventional" thin film growth. The epitaxial relationship rests only partly on dimensional matching with the chain axis repeat distance (which would be valid for both forms I and II) and on interchain distances. Whereas a better dimensional match would be achieved with form I, selection of the isochiral form II results from better correspondence of the surface topographies of the deposit (110)(II) sPP and substrate 2-Quin (001) contact faces.
Resumo:
The miscibility, crystallization behavior and morphological structure of PHB/PMA blends have been studied by the differential scanning calorimeter (DSC) and polarized optical microscopy (POM). The chemical repeat units of the two components of the blend are isomers. The results indicate that PHB and PMA are miscible in the melt. The addition of PMA into PHB results in a depression in the spherulite growth rate of PHB. With increasing PMA content in the blends, the texture of PHB spherulite becomes more open.
Resumo:
The miscibility and phase behavior of polysulfone (PSF) and poly(hydroxyether of bisphenol A) (phenoxy) with a series of copoly(ether ether ketone) (COPEEK), a random copolymer of poly(ether ether ketone) (PEEK), and phenolphthalein poly(ether ether ketone) (PEK-C) was studied using differential scanning calorimetry. A COPEEK copolymer containing 6 mol % ether ether ketone (EEK) repeat units is miscible with PSF, whereas copolymers containing 12 mol % EEK and more are not. COPEEK copolymers containing 6 and 12 mol % EEK are completely miscible with phenoxy, but those containing 24 mol % EEK and more are immiscible with phenoxy. Moreover, a copolymer containing 17 mol % EEK is partially miscible with phenoxy; the blends show two transitions in the midcomposition region and single transitions at either extreme. Two T(g)s were observed for the 50/50 blend of phenoxy with the copolymer containing 17 mol % EEK, whereas a single composition-dependent T-g appeared for all the other compositions. An FTIR study revealed that there exist hydrogen-bonding interactions between phenoxy and the copolymers. The strengths of the hydrogen-bonding interactions in the blends of the COPEEK copolymers containing 6 and 12 mol % EEK are the same as that in the phenoxy/PEK-C blend. However, for the blends of copolymers containing 17, 24, and 28 mol % EEK, the hydrogen-bonding interactions become increasingly unfavorable and the self-association of the hydroxyl groups of phenoxy is preferable as the content of EEK units in the copolymer increases. The observed miscibility was interpreted qualitatively in terms of the mean-field approach. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Heat-of-mixing data, obtained on blends of poly(ethylene oxide) (PEO) with whole and fractionated poly(vinyl acetate) (PVAc), were used to feed Patterson's theory of polymer-polymer miscibility. Negative values of mixing enthalpy, contact-energy term, interaction'' parameter and excess volume were obtained only for blends with the lowest molecular weight PVAc fraction. These results show that miscibility of PVAc with PEO strongly depends on its molecular weight. The calculated unfavourable excess volume term of the Patterson equation is small in comparison with the absolute value of the interaction term. Therefore, miscibility of PEO and low-molecular-weight PVAc is dictated by the weak specific interactions between different repeat units and by the entropic gain in the mixing process.
Resumo:
The bay scallop (Argopecten irradians irradians Lamarck 1819) has become one of the most important aquaculture species in China. Genetic improvement of cultured bay scallop can benefit greatly from a better understanding of its genome. In this study, we developed amplified fragment length polymorphisms (AFLPs) and simple sequence repeat markers from expressed sequence tags (EST-SSRs) for linkage analysis in bay scallop. Segregation of 390 AFLP and eight SSR markers was analysed in a mapping population of 97 progeny. Of the AFLP markers analysed, 326 segregated in the expected 1:1 Mendelian ratio, while the remaining 74 (or 19.0%) showed significant deviation, with 33 (44.6%) being deficient in heterozygotes (A/a). Among the eight polymorphic EST-SSR loci, one marker (12.5%) was found skewing from its expected Mendelian ratios. Eighteen per cent of the markers segregating from female parent were distorted compared with 21% of the markers segregating from male parent. The female map included 147 markers in 17 linkage groups (LGs) and covered 1892.4 cM of the genome. In the male map, totally 146 AFLP and SSR markers were grouped in 18 LGs spanning 1937.1 cM. The average inter-marker spacing in female and male map was 12.9 and 13.3 cM respectively. The AFLP and SSR markers were distributed evenly throughout the genome except for a few large gaps over 20 cM. Although preliminary, the genetic maps presented here provide a starting point for the mapping of the bay scallop genome.
Resumo:
Through random sequencing, we found a total of 884000 base-pairs (bp) of random genomic sequences in the genome of Chinese shrimp (Fenneropenaeus chinensis). Using bio-soft Tandem Repeat Finder (TRF) software, 2159 tandem repeats were found, in which there were 1714 microsatellites and 445 minisatellites, accounting for 79.4% and 20.6% of repeat sequences, respectively. The cumulative length of repeat sequences was found to be 116685 bp, accounting for 13.2% of the total DNA sequence; the cumulative length of microsatellites occupied 9.78% of the total DNA sequence, and that of minisatellites occupied 3.42%. In decreasing order, the 20 most abundant repeat sequence classes were as follows: AT (557), AC (471), AG (274), AAT (92), A (56), AAG (28), ATC (27), ATAG (27), AGG (18), ACT (15), C (11), AAC (11), ACAT (11), CAGA (10), AGAA (9), AGGG (7), CAAA (7), CGCA (6), ATAA (6), AGAGAA (6). Dinucleotide repeats, not only in the aspect of the number, but also in cumulative length, were the preponderant repeat type. There were few classes and low copy numbers of repeat units of the pentanucleotide repeat type, which included only three classes: AGAGA, GAGGC and AAAGA. The classes and copy numbers of heptanucleotide, eleven-nucleotide and thirteen-nucleotide primer-number-composed repeats were distinctly less than that of repeat types beside them.
Resumo:
The unicellular green alga Haematococcus pluvialis accumulates a highly valuable ketocarotenoid, astaxanthin, under various environmental stresses. beta-carotene ketolase (BKT) plays a key role in astaxanthin biosynthesis in H. pluvialis. In this paper, an approximate 700 bp 5'-flanking region of the bkt gene containing a putative promoter was cloned through walking upstream. The results of the sequence analysis showed that this bkt 5'-flanking region might have cis-acting elements such as sterol regulatory element (SRE-1)-like motifs, the C-repeat/dehydration responsive element (DRE) and al-3 proximal element (APE)-like motifs, except for typical TATA and CCAAT boxes. The results of the P-galactosidase assay and the transient expression of lacZ driven by a series of sequential deletions revealed that a minimal promoter-like region might exist from -630 to -408 bp, and the highest promoter activity was observed to span the positions from -630 to -308 bp. The results of the site-directed mutagenesis of a C-repeat/DRE and two APE-like motifs in a promoter-like region (-630 to -308 bp) suggested that two APE-like motifs might be essential for transcriptional control of the bkt gene.
Resumo:
HS1 (haematopoietic lineage cell-specific gene protein 1), a prominent substrate of intracellular protein tyrosine kinases in haematopoietic cells, is implicated in the immune response to extracellular stimuli and in cell differentiation induced by cytokines. Although HS1 contains a 37-amino acid tandem repeat motif and a C-terminal Src homology 3 domain and is closely related to the cortical-actin-associated protein cortactin, it lacks the fourth repeat that has been shown to be essential for cortactin binding to filamentous actin (F-actin). In this study, we examined the possible role of HS1 in the regulation of the actin cytoskeleton. Immunofluorescent staining demonstrated that HS1 co-localizes in the cytoplasm of cells with actin-related protein (Arp) 2/3 complex, the primary component of the cellular machinery responsible for de novo actin assembly. Furthermore, recombinant HS1 binds directly to Arp2/3 complex with an equilibrium dissociation constant (K-d) of 880 nM. Although HS1 is a modest F-actin-binding protein with a Kd of 400 nM, it increases the rate of the actin assembly mediated by Arp2/3 complex, and promotes the formation of branched actin filaments induced by Arp2/3 complex and a constitutively activated peptide of N-WASP (neural Wiskott-Aldrich syndrome protein). Our data suggest that HS1, like cortactin, plays an important role in the modulation of actin assembly.
Resumo:
The bay scallop Argopecten irradians is a hermaphroditic bivalve native to the Atlantic coast of the United States that was introduced to China for aquaculture production in 1982. It now supports a major aquaculture industry in China. Introduced species often start with limited genetic variability, which is problematic for the further selective breeding. Bay scallop aquaculture is exclusively hatchery based and as the initial introduction consisted of only 26 scallops, there have been concerns about inbreeding and inbreeding depression in cultured populations in China. In this study, eleven simple sequence repeat (SSR) markers were used to compare genetic variation in cultured populations from China with that in a natural population from the east coast of America. Although the difference in heterozygosity was small, the Chinese populations lost 9 of the 45 alleles (20%) found in the wild population. The reduced allele diversity suggests that the Chinese bay scallop populations experienced a bottleneck in genetic diversity that remains significant despite several recent introductions of new stocks aimed at expanding the gene pool. The loss of allele diversity may affect future efforts in selective breeding and domestication, and results of this study highlight the need for additional introductions, advanced breeding programs that minimize inbreeding and continued genetic monitoring. (c) 2007 Elsevier B.V. All rights reserved.