70 resultados para polyurethane foam unit (PFU)
Resumo:
The effect of adding diblock copolymer poly(styrene-b-4-vinylpyridine) (P(S-b-4VPy), to immiscible blends of syndiotactic polystyrene (sPS)/thermoplastic polyurethane (TPU) on the morphology, thermal transition, crystalline structure, and rheological and mechanical properties of the blends has been investigated. The diblock copolymer was synthesized by sequential anionic copolymerization and was melt-blended with sPS and TPU. Scanning electron microscopy (SEM) showed that the added block copolymer reduced the domain size of the dispersed phase in the blends. Differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) revealed that the extent of compatibility between sPS and TPU affected the crystallization of the sPS in the blends. Tensile strength and elongation at break increased, while the dynamic modulus and complex viscosity decreased with the amount of P(S-b-4VPy) in the blend. The compatibilizing effect of the diblock copolymer is the result of its location at the interface between the sPS and the TPU phases and penetration of the blocks into the: corresponding phases, i.e. the polystyrene block enters the noncrystalline regions of the sPS, and the poly(4-vinylpyridine) block interacts with TPU through intermolecular hydrogen bonding. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
A series of macrocyclic arylate dimers have been selectively synthesized by an interfacial polycondensation of o-phthaloyldichloride with bisphenols. A combination of GPC, FAB-MS, H-1 and C-13 NMR unambiguously confirmed the cyclic nature. Although single-crystal X-ray analysis of two such macrocycles reveals no severe strain on the cyclic structures, these macrocycles can undergo facile melt polymerization to give high molecular weight polyarylates.
Resumo:
The catalytic mechanisms of triphenyl bismuth (TPB), dibutyltin dilaurate (DBTDL) and their combination have been studied in a model polyurethane reaction system consisting of copolyether (tetrahydrofuran-ethyleneoxide) and N-100; NMR spectroscopy was used to detect the associations between reactants and catalysts. A relatively stable complex was shown to be formed between hydroxyl and isocyanate; the catalysts showed different effects on the isocyanate-hydroxyl complex, therefore resulting in different curing characteristics. The formation of hydrogen bonding between the complexed hydroxyl and other hydroxyl or the resulting urethane provided an ''auto-catalysis'' to urethane formation. DBTDL destroyed the isocyanate-hydroxyl complex before catalyzing the reaction through the formation of a ternary complex, whereas TPB was able to activate the isocyanate-hydroxyl complex directly to form urethane. The reaction catalyzed by the combination of TPB and DBTDL gained advantages from the multiple catalytic entities, i.e., TPB, DBTDL, and a TPB-DBTDL complex. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Poly(ether urethane) cationomers based on poly(oxytetramethylene), 4,4'-bibenzyldiisocyanate, N-methyldiethanolamine as chain extender, and acrylic acid/poly(acrylic acid) as quaternization agent were synthesized. Pyrrole (15 wt.-%) was polymerized in films of the ionomer containing CuCl2. The films were characterized by dynamic mechanical analysis, thermogravimetry and differential scanning calorimetry. The electric conductivity of the film without polypyrrole is 7.5 . 10(-12) Omega(-1)cm(-1), while incorporation of polypyrrole increases the conductivity to 4.5 . 10(-6) Omega(-1) cm(-1).
Resumo:
Polyurethane (PU) based on polyepichlorohydrin/poly(methyl methacrylate) (PECH/PMMA) interpenetrating polymer networks (IPNs) was synthesized by a simultaneous method. The effects of composition, hydroxyl group number of PECH, NCO/OH ratio and crosslinking agent content in IPNs were investigated in detail. Some other glycols, such as poly(ethylene glycol), poly(propylene glycol) and hydroxyl-terminated polybutadiene, were also used to obtain PU/PMMA IPNs. The interpenetrating and fracture behaviors of the IPNs are explained briefly.
Resumo:
Interpenetrating polymer networks of polyepichlorohydrin-based polyurethane/poly(MMA-co-St) have been prepared with simultaneous mettled by changing the weight fraction of MMA(W-MMA) in copolymer of MMA with styrene. The IPNs have been studied by DSC, TEM and dynamic mechanical spectroscopy(DMS). The results show that the IPNs have only one T-g, when W-MMA is greater than 0. 6. But when W-MMA IMA is less than 0. 4, the IPNs have two T(g)s, and phase separation is observed on TEM. The phenomenon is explained according to the solubility parameters(delta) and the fraction of hydrogen bond(delta(h)) of P (MMA-co-St). The study reveals that there is a close correlation among the delta, domain size and mechanical properties of PU (PECH)/P(MMA-co-St) IPN.
Resumo:
This paper reports a study of compatibilization and the mechanism of compatibilization of polypropylene (PP)/thermoplastic polyurethane (TPU) blends with maleated polypropylene (PP-MA) and its graft copolymer with polyethylene oxide (PEO), (PP-MA)-g-PEO.