97 resultados para periodic microstructures
Resumo:
Mg-5Al-0.4Mn-xNd (x=0, 1, 2 and 4wt.%) alloys were prepared by metal mould casting method. The microstructures and mechanical properties were investigated. The results demonstrated that Al11Nd3 phase was formed and mainly aggregated along the grain boundaries with the addition of Nd. Meanwhile, the grain sizes were greatly reduced with the increasing Nd content.
Resumo:
Microstructures and mechanical properties of the peak-aged Mg-4.5Zn-xGd (x = 0, 2, 3 and 5 wt.%) alloys have been investigated. The results showed that grain size increased with increasing Gd. Phase analysis showed that MgZn2 phase was observed in the Mg-4.5Zn alloy. While with Gd additions, Mg3Gd and Mg3Gd2Zn3 phases formed, and the volume fraction of the Mg3Gd2Zn3 phase increased with increasing Gd. Tensile test results indicated that the optimal mechanical properties were obtained in the Mg-4.5Zn-2Gd alloy, and the ultimate tensile strength and yield strength were 215 MPa and 121 MPa, respectively.
Resumo:
Birefringent ring-banded spherulites with radial periodic variation of thicknesses were grown from poly(epsilon-caprolactone) (PCL) solutions under conditions for which the Solution concentration was held constant during the whole development of the morphology. The as-grown ring-banded spherulites were investigated by optical (OM) and atomic force (AFM) microscopies, by transmission electron microscopy (TEM) of samples sectioned parallel to the plane of film, and also by electron diffraction (ED) and grazing incidence X-ray diffraction (GIXD) techniques.
Resumo:
Ytterbium fluoride compounds with different crystal phases and morphologies, such as beta-NaYbF4 hexagonal microdisks, microprisms, microtubes, and alpha-NaYbF4 submicrospheres as well as YbF3 octahedra, have been synthesized via a facile hydrothermal route. X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and photoluminescence (PL) spectra were used to characterize the samples.
Resumo:
In this paper, we demonstrate a novel and efficient route by which the shape-controlled synthesis of t-Se nano/microstructures including nanowires, nanorods, nanobelts, microtubes, and flowers, as well as uniform spheres of a-Se, can be readily realized based on solution-mediated heat treatment with commercially available Se powders. X-ray diffraction (XRD), energy-dispersive X-ray spectra (EDS), Raman spectra, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques were used to characterize the samples.
Resumo:
Urea bridged organic-inorganic hybrid mesoporous SiO2 materials (U-BSQMs) were synthesized through a sol-gel procedure by co-condensation of bis(triethoxysilyl propyl) urea (BSPU) under basic conditions using cetyltrimethylammonium bromide (CTAB) as organic template. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the mesoporous structure of the sample. Fourier-transform infrared spectroscopy (FT-IR), solid state CP-MAS NMR spectroscopy of Si-29 (Si-29, CP-MAS NMR) and C-13 (C-13 CP NMR) indicated that most of the Si-C bonds are unbroken during the synthesis process.
Resumo:
The microstructures and mechanical properties of cast Mg-Zn-Al-RE alloys with 4 wt.% RE and variable Zn and At contents were investigated. The results show that the alloys mainly consist of alpha-Mg, Al2REZn2, Al4RE and tau-Mg-32(Al,Zn)(49) phases. and a little amount of the beta-Mg17Al12 phase will also be formed with certain Zn and At contents. When increasing the Zn or At content, the distribution of the Al2REZn2 and Al4RE phases will be changed from cluster to dispersed, and the content of tau-Mg-32(Al,Zn)(49) phase increased gradually. The distribution of the Al2REZn2 and Al4RE phases, and the content of beta- or tau-phase are critical to the mechanical properties of Mg-Zn-Al-RE alloys.
Resumo:
Mg-5Y-3Nd-0.6Zr-xGd (x = 0, 2 and 4 wt.%) alloys were prepared by metal mould casting technique, the structures and mechanical properties were investigated. The alloys were mainly composed of alpha-Mg solid solution and beta-phase. With increasing Gd content, Mg5RE phase increased and the grain was refined. The Mg-5Y-3Nd-2Gd-0.6Zr alloy exhibited highest ultimate tensile strength and Mg-5Y-3Nd-0.6Zr alloy showed highest yield strength at room temperature. With increasing amount of Gd, the thermal resistance was improved. The Mg-5Y-3Nd-4Gd-0.6Zr alloy exhibited highest UTS and YS at 250 degrees C, they were about 1.27 times higher than those of Gd-free alloy, which was mainly attributed to the increase of the beta-phase and Mg5RE strengthening phase.
Resumo:
Ternary europium complex Eu(tta)(3)phen was covalently bonded with the general mesoporous. material SBA-15 and SBA-15-type of periodic mesoporous organosilica (PMO) material via impregnation of Eu(tta)(3)center dot 2H(2)O into phen-S15 and phen-PMO, respectively, through a ligand exchange reaction. The parent materials of phen-S15 and phen-PMO were synthesized by co-condensation of tetraethylorthosilicate (TEOS) or 1,2-bis(triethoxysilyl)ethane (BTESE) and the functionalized chelate ligand 5-(N,N-bis(3-triethoxysilyl)propyl)ureyl-1,10-phenanthroline (phen-Si) in the presence of Pluronic P123 surfactant as template, which were confirmed by SEM, XRD, FTIR, Si-29 CP-MAS NMR, and N-2 adsorption measurements.