379 resultados para oxidation catalysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrocatalytic oxidation of hydrazine (N2H4) on a glassy carbon electrode (GC) modified by monolayer and polymer films of cobalt protoporphyrin dimethyl ester (CoPP) has been studied. Both the monolayer and polymer films of CoPP are very active to the anodic oxidation of N2H4. The activity of CoPP for the anodic oxidation of N2H4 is dependent on the pH of the solution, and the thickness of polymerized CoPP film. The oxidation kinetics were examined by methods of cyclic voltammetry, rotating disc electrodes and steady-state polarization measurement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ignition processes for the catalytic partial oxidation of methane (POM) to synthesis gas over oxidic nickel catalyst (NiO/Al2O3), reduced nickel catalyst (Ni-0/Al2O3), and Pt-promoted oxidic nickel catalyst (Pt-NiO/Al2O3) were studied by the temperature-programmed surface reaction (TPSR) technique. The complete oxidation of methane usually took place on the NiO catalyst during the CH4/O-2 reaction, even with a pre-reduced nickel catalyst, and Ni-0 is inevitably first oxidized to NiO if the temperature is below the ignition temperature. It is above a certain temperature that Ni-0 is formed again, which leads to the start of the POM. The POM can be initiated at a much lower temperature on a Pt-NiO catalyst because of Pt promotion of the reduction of NiO. The POM in a fluidized bed can be easily initiated due to the addition of Pt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deposition of carbon on catalysts during the partial oxidation of methane to syngas has been investigated in a fluidized bed. It was found that the relative rate of carbon deposition follows the order NiP > >d > Pt, Rh. Although the rate of carbon deposition in the fluidized bed was much lower than that in the fixed bed, carbon deposition could still be detected in the fluidized bed if a CH4/O-2 ratio in greater than 2.3 was used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simultaneous NO reduction and CO oxidation in the presence of O-2,H2O and SO2 over Cu/Mg/AUO (Cu-cat), Ce/Mg/Al/O (Ce-cat) and Cu/Ce/Mg/Al/O (CuCe-cat) were studied. At low temperatures (<340 degreesC), the presence of O-2 or H2O enhanced the activity of CuCe-cat for NO and CO conversions, but significantly suppressed the activity of Cu-cat and Ce-cat, At high temperature (720 degreesC), the presence of O-2 or H2O had no adverse effect on the NO and CO conversions over these catalysts. The addition of SO2 to NO + CO + O-2 + H2O system had no effect on the, reaction of CO + O-2 over Cu-cat, but deactivated this catalyst for NO + CO and CO + H2O reactions; over Ce-cat, all of these reactions of NO + CO, CO + O-2 and CO + H2O were suppressed significantly; over CuCe-cat, NO + CO and CO + O-2 reactions were not affected while the reaction of CO + H2O was slightly inhibited. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel and ideal dense catalytic membrane reactor for the reaction of partial oxidation of methane to syngas (POM) was constructed from the stable mixed conducting perovskite material of BaCo0.4Fe0.4Zr0.2O3-delta and the catalyst of LiLaNiO/gamma-Al2O3. The POM reaction was performed successfully. Not only was a short induction period of 2 h obtained, but also a high catalytic performance of 96-98% CH4 conversion, 98-99% CO selectivity and an oxygen permeation flux of 5.4-5.8 ml cm(-2) min(-1) (1.9-2.) mumol m(-2) S-1 Pa-1) at 850 degreesC were achieved. Moreover, the reaction has been steadily carried out for more than 2200 h, and no interaction between the membrane material and the catalyst took place.