93 resultados para ore


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples from carbonate wall-rocks, skarn, ore of skarn type, later calcite vein, and ore of porphyry type in Shouwangfen copper deposit district were collected. Systematic study was carried out on carbon, oxygen, rubidium, strontium and sulfur isotope compositions of carbonates and sulfides in these samples. The first Isochron dating by the Rb-Sr isotopes in chalcopyrite of ore sub-sample was done as well. The following conclusions were obtained. The age (113.6±4.3Ma), obtained by Rb-Sr isotope isochron dating of chalcopyrite and pyrite from sub-sample of skarn ores, probably represents the true mineralization age of skarn ores. That demonstrates the genetic relationship between granodiorite in Shouwangfen complex and skarn copper ores. On the other hand, the Rb-Sr isochron age (73±15Ma) of chalcopyrite from porphyry ores is a little incredible because of bad synthesizing evaluation. But combined with other age data of igneous rocks, it implies the possibility of hydrothermal mineralization in connection with magma activity during the fourth period of Yanshanian in Hebei Province, even in the whole northern edge of Huabei continental block. Together from structure analysis of sulfide sub-samples, from pretreating preccedure of Rb-Sr isotope isochron and its' valuating, we found out that Rb-Sr isotope isochron of sulfide sub-samples is influenced by the crystal structure of sulfides. That is, sulfide ores with very big crystals are not suitable for sub-sample isochron. Carbon, oxygen, sulfur and strontium compositions, of different minerals in these two kinds of ores, imply that the ore-forming hydrothermal fluids were probably derived from magma deep under the crust. The calcite ~(87)Sr/~(86)Sr ratios from the porphyry are consistent to the initial 87Sr/86Sr ratio of the Rb-Sr isochron of chalcopyrite and pyrite in the skarn ore, indicating that these two kinds of ores have the same source characteristic, although the porphyry deposit was formed probably 40 million years later than the skarn one according to our dating results. Skarn and skarn ores are usually considered as interaction product between carbonate wall-rocks and magmatic fluids, but the carbon of the sedimentary carbonate seems not involved in the skarn ores. Considering the connection of magmatic processes and hydrothermal ore formation in the Shouwangfen district, particularly, the spatial distribution of skarn-type and porphyry-type ores, it is possible that the Shouwangfen ore district corresponds to a hydrothermal ore-forming system, which was promoted by high-intruding magmatic rocks. Systematic stable isotopic research can help to reveal the upper part of this hydrothermal ore-forming system, which mainly related to heated and circulating meteoric water, and the lower part principally related to ascending magmatic fluids. Both skarn and porphyry ore-bodies are formed by up-intruding magmatic fluids (even more deep mantle-derived fluids).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

These are two parts included in this report. In the first part, the zonation of the complexes in its series, lithofacies, the depth of magma source and chambers is discussed in detailed for the first time based on the new data of petrol-chemistry, isotopes, tectono-magma activity of Mesozoic volcano-plutonic complexes in the southern Great Hinggan Mts. Then, the genetic model of the zonality, double overlapped layer system, is proposed. The main conclusions are presented as follows: The Mesozoic volcanic-plutonic complexes in the southern Great Hinggan were formed by four stages of magma activity on the base of the subduction system formed in late Paleozoic. The Mesozoic magmatic activity began in Meso-Jurassic Epoch, flourished in late Jurassic Epoch, and declined in early Cretaceous Epoch. The complexes consist dominantly of acidic rocks with substantial intermediate rocks and a few mefic ones include the series of calc alkaline, high potassium calc alkaline, shoshonite, and a few alkaline. Most of those rocks are characterized by high potassium. The volcano-plutonic complexes is characterized by zonality, and can be divided mainly into there zones. The west zone, located in northwestern side of gneiss zone in Great Xinggan mountains, are dominated of high potassium basalts and basaltic andesite. The middle zone lies on the southeast side of the Proterozoic gneiss zone, and its southeast margin is along Huangganliang, Wushijiazi, and Baitazi. It composed of dominatly calc-alkaline, high potassium calc-alkaline rocks, deep granite and extrusive rhyolite. The east zone, occurring along Kesheketong Qi-Balinyou Qi-Balinzuo Qi, is dominated of shoshonite. In generally, southeastward from the Proterozoic gneiss zone, the Mesozoic plutons show the zones-mica granitites zone, hornblende-mica granitite zone, mica-hornblende granitite zone; the volcanic rocks also display the zones of calc alkaline-high potassium calc alkaline and shoshonites. In the same space, the late Paleozoic plutons also display the same zonality, which zones are combined of binary granite, granodiorite, quartz diorite and diorite southeast wards from the gneiss. Meso-Jurassic Epoch granite plutons almost distribute in the middle zone on the whole. Whereas late Jurassic Epoch volcanic rocks distribute in the west and east zone. This distribution of the volcano-plutonic complexes reveals that the middle zone was uplifted more intensively then the other zones in Meso-Jurassic and late Jurassic Epoches. Whole rock Rb-Sr isochron ages of the high potassium calc-alkaline volcanic rocks in the west zone, the calc-alkaline and high potassium calc-alkaline granite the middle zone, shoshonite in the east zone are 136Ma, 175Ma and 154Ma, respectively. The alkaline rocks close to the shoshonite zone is 143Ma and 126Ma. The isochron ages are comparable well with the K-Ar ages of the rocks obtained previously by other researchers. The compositions of Sr ans Nd isotopes suggest that the source of Mesozoic volcanic-plutonic complexes in Great Hinggan Mts. is mostly Paleo-Asia oceanic volcanic-sedimentary rocks, which probably was mixed by antiquated gneiss. The tectonic setting for Mesozoic magmatism was subductive continental margin. But this it was not directly formed by present west Pacific subduction. It actully was the re-working of the Paleozoic subduction system( which was formed during the Paleo-Asia ocean shortening) controlled by west Pacific subduction. For this reason, Although Great Hinggan Mts. is far away from west Pacific subduction zone, its volcanic arc still occurred echoing to the volcanic activities of east China, it, but the variation trend of potassium content in volcano-plutonic complexes of Great Hinggan is just reverse to ones of west Pacific. The primitive magmas occurred in the southern Great Hinggan Mts. Include high-potassium calc-alkaline basalt, high potassium calc-alkaline rhyolite, high potassium rhyolite, non-Eu negative anomaly trachy-rhyolite et al. Therefore, all of primitive magmas are either mafic or acid, and most of intermediate rocks occurring in the area are the products of Mesozoic acid magma contaminated by the Paleozoic volcanic- sedimentary rocks. The depth of those primitive magma sources and chambers gradually increase from northwest to southeast. This suggests that Paleozoic subduction still controlled the Mesozoic magmatism. In summary, the lithosphere tectonic system of the southern Great Hinggan Mts. controlling Mesozoic magmatism is a double overlapped layer system developing from Paleozoic subduction system. For this reason, the depth of crust of the southern Great Hinggan Mts. is thicker than that of its two sides, and consequently it causes regional negative gravity abnormity. The second part of this report shows the prolongation of the research work carried on in my doctor's period. Author presents new data about Rb-Sr and Sm-Nd isotopic compositions and ages, geochamical features, genesis mineralogy and ore deposit geology of the volcanic rocks in Kunyang rift. On the base of the substantial work, author presents a prospect of copper bearing magnetite ore deposit. The most important conclusions are as follows: 1. It is proved that all of these carbonatites controlled by a ringing structure system in Wuding-Lufeng basin in the central Yunnan were formed in the Mesoproterozoic period. Two stages could be identified as follows: in the first stage, carbonatitic volcanic rocks, such as lavas(Sm-Nd, 1685Ma), basaltic porphyrite dykes(Sm-Nd, 1645Ma), pyroclastic rocks and volcaniclastic sedimentary rocks, formed in the outer ring; in the second stage, carbonatitic breccias and dykes(Rb-Sr, 1048 Ma) did in the middle ring. The metamorphic age of the carbonatitic lavas (Rb-Sr, 893 Ma) in the outer ring was determined. The magma of carbonatitic volcanic rocks derived mainly form enriched mantle whose basement is depleted mantle that had been metasomated by mantle fluid and contaminated by Archaean lower crust. Carbonatitic spheres were discovered in ore bearing layers in Lishi copper mining in Yimen recently, which formed in calcite carbonatitic magma extrusion. This discovery indicates that the formation of copper ore deposit genesis relates to carbonatitic volcanic activity. The iron and copper ore deposits occurring in carbonatitic volcanic- sedimentary rocks in Kunyang rift results from carbonatitic magmatism. Author calls this kind of ore deposits as subaqueous carbonatitic iron-copper deposit. The magnetic anomaly area in the north of Lishi copper mining in Yimen was a depression more lower than its circumference. Iron and copper ores occurrig on the margin of the magnetic anomaly are volcanic hydrothermal deposit. The magnetic body causing the magnetic anomaly must be magnetite ore. Because the anomaly area is wide, it can be sure that there is a large insidious ore deposit embedding there.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation is mainly composed of seven chapters. Specifically, a preface which introduces the background and significance of the dissertation, the present state of study relating to the dissertation, the methods and frame of the study in the dissertation is presented in the first chapter. The second chapter is mainly focused on the present theories and methods about the study on the Problems of Catastrophic Destabilization which are induced by deep mining. In the third chapter, basic conditions of Jinchuan Deposit II are introduced, which include regional geological background, engineering geological conditions, in-situ stress, hydrological geological conditions, mining methods and the present state of the horizontal ole layer. The fourth chapter analysizes the problem of Catastrophic Destabilization of the horizontal ole layer with theoretical methods and gives an analytical solution of elastic foundation beam which two ends are fixed and a catastrophic model of the horizontal ole layer. With FLAC3D, the Problem of Catastrophic Destabilization is analyzed, the variation of displacement and stress of the horizontal ole layer is described, and a development of plastic zone in ore layer is given out. The contents in the sixth chapter is a preliminary design of monitoring system for the horizontal ole layer. At the end of the text, several comprehensive conclusions are given in the seventh chapter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Sawuer gold belt is located in the transition belt between Siberian plate and Kazakhstan-Junggar plate. Based on the geological and geochemical studies on the Kuoerzhenkuola and Buerkesidai gold deposits, in Sawuer gold mineralization belt, the time-space structure of mineralization and mineralizing factor are studied, the metallogenic regularity is concluded in thistheses. The ore bodies have the regularity that orebody are of the extensive and compressive in the sallow and depth of volcanic apparatue, respectively, and the vertical extension of orebody is more intensive than the horizontal extension. The gold deposits were controlled by the fractures of volcanic apparatus and regional faults, and featured by the hydrothermal alteration and metasomatism type disseminated mineralization and filling type vein mineralization. By virtue of the geological and geochemical studies on the two deposits that the formation of the two deposits are significantly related to the volcanic activity, we propose new ideas about their origin: (1) the two deposits are located in the same strata, and share the same genesis. (2) both of two deposits are volcanogenic late-stage hydrothermal gold deposits. Based on mapping of volcanic lithofacies and structure for the first time, it is discovered that a volcanic apparatus existed in the study area. Volcanic-intrusive activity can be divided into three cycles and nine lithofacies. where the two deposits are hosted in the same volcanic cycle, in this case, the wall-rock should belong to the same strata. The 40Ar-39Ar age method is employed in this work to analyze the fluid inclusions of quartz in the ore bodies from Kuoerzhenkuola and Buerkesidai gold deposits. The results show that the main mineralization occurred in 332.05 + 2.02-332.59 + 0.5IMa and 335.53 + 0.32Ma~336.78 + 0.50Ma for Kuoerzhenkuola and Buerkesidai gold deposits respectively, indicating that the two deposits are formed almost at the same time, and the metallogenic epoch of the tow deposits are close to those of the hosting rocks formed by volcanic activity of Sawuer gold belt. This geochronological study supplies new evidence for determining the timing of gold mineralization, the geneses of gold deposits? and identifies that in Hercynian period, the Altai developed tectonic-magmatic-hydrothermal mineralization of Early Carboniferous period, except known two metallogenic mineralization periods including tectonic-magmatic-hydrothermal mineralization of Devonian period and Late Carboniferous-Permian period respectively. The study of fluid inclusions indicates that the ore-forming fluid is a type of NaCl-HbO fluid with medium-low temperature and low salinity, Au is transported by the type of auric-sulfur complex (Au (HS)2-), the ore is formed in reduction condition. Hydrogen and oxygen isotopes of fluid inclusions in the major mineralizating stage show that the solutions mainly originated from magmatic water and meteoric water. The fluid mixing and water-rock reaction cause the deposition of Au. The helium and argon isotope compositions of fluid inclusions hosted in pyrite have been measured from Kuoerzhenkuola and Buerkesidai gold deposits in Sawuer gold belt. The results show that the ore-forming fluids of two deposits possessed the same source and is a mixture of mantle- and partial meteoric water-derived fluid, and the reliability of He and Ar isotopic compositions in Hercynian period is discussed. Isotopic studies including H, O, He, C, S, Pb and Sr reveal the same result that the ore-forming fluids of two deposits possessed the same source: the water derived mainly from magmatic water, partially from meteoric water; the mineralizers and ore materials derived mainly from mantle beneath the island arc, and partially from crust. The ore-forming fluids of two deposits are a mixture of mantle-derived fluids being incorporated by crust-derived fluid, and shallow partial meteoric water. Based on these results, it is proposed that the geneses of the two gold deposits are the same, being volcanogenic late-stage hydrothermal gold deposits that the ore-forming fluids filled in fractures of volcanic apparatus and metasomatized the host rocks in the volcanic apparatus. It is the first time we carried out the geophysical exploration, that is, the EH-4 continuous electrical conductivity image system measurement, the results show that relative large-size mineralizing anomalies in underground have been discovered.lt can confirm the law and genesis of the deposits mentioned above, and change the two abandoned mines to current large-size potenial exploration target.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the progress of prospecting, the need for the discovery of blind ore deposits become more and more urgent. To study and find out the method and technology for the discovery of blind and buried ores is now a priority task. New geochemical methods are key technology to discover blind ores. Information of mobile components related to blind ores were extracted using this new methods. These methods were tested and applied based on element' s mobile components migrating and enriched in geophysical-geochemical process. Several kinds of partial extraction techniques have tested based on element' s occurrence in hypergenic zone. Middle-large scale geochemical methods for exploration in forest and swamp have been tested. A serious of methods were tested and applied effetely about evaluation of regional geochemical anomaly, 1:25000 bedrock or soil geochemical methods sampling based on the net in dendritic water system instead of the normal net. 1. Element related with ores can be mobiled to migrate upwards and be absorpted by surface soil. These abnomal components can be concentrated by natural or artificial methods. These trace metalic ions partially exist in dissovlvable ion forms of active state, and partially have been absorbed by Fe-Mn oxide, soil and organic matter in the soil so that a series of reaction such as complex reaction have take place. Employing various partial extraction techniques, metallic ions related with the phase of the blind ores can be extracted, such as the technique of organic complex extraction, Fe-Mn oxide extraction and the extraction technique of metallic ions of various absorption phases. 2.1:200000 regional geochemical evaluation anomaly methods: Advantageous ore-forming areas were selected firstly. Center, concentration, morphological feature, belt of anomaly were choosed then. Geological and geochemical anomalies were combined. And geological and geochemical background information were restrained. Xilekuduke area in Fuyun sheet , Zhaheba area in Qiakuerte sheet, the west-north part in Ertai sheet and Hongshanzui anomaly in Daqiao sheet were selected as target areas, in Alertai, in the north of Xinjiang. in Xilekuduke area, 1:25000 soil geochemical methods sampling based on the net in dendritic water system was carried out. Cu anomaly and copper mineralization were determined in the center area. Au , Cu anomalies and high polarization anomaly were determined in the south part. Prospecting by primary halo and organic complex extraction were used to prognosis blind ore in widely rang outcrop of bedrock. 1:25000 bedrock or soil geochemical methods sampling based on the net in dendritic water system were used in transported overburden outside of mining area. Shallow seismic method and primary halo found a new blind orebody in mining area. A mineralization site was fou and outside of Puziwan gold mine, in the north of Shanxi province. Developing middle-large scale geochemical exploration method is a key technique based 1:200000 regional geochemical exploration. Some conditions were tested as Sampling density , distribution sites of sample, grain size of sample and occurrence of element for exploration. 1:50000 exploration method was advanced to sample clast sediment supplement clast sediment in valley. 1:25000 bedrock or soil geochemical methods sampling based on the net in dendritic water system was applied to sample residual material in A or C horizon. 1:2000 primary or soil halo methods used to check anomalies and determine mineralization. Daliang gold mineralization in the northern Moerdaoga was found appling these methods. Thermomagnetic method was tested in miniqi copper-polymetallic ore. Process methods such as grain size of sample, heated temperature, magnetic separating technique were tested. A suite of Thermomagnetic geochemical method was formed. This method was applied in Xiangshan Cu~Ni deposit which is cover by clast or Gobi in the eastern Xinjiang. Element's content and contrast of anomaly with Thermomagnetic geochemical method were higher than soil anomaly. Susceptibility after samples were heated could be as a assessment conference for anomaly. In some sectors thermo-magnetic Cu, Ni, Ti anomalious were found outside deposits area. There were strong anomal ies response up ore tested by several kind of partial extraction methods include Thermomagnetic, enzyme leach and other partial extractions in Kalatongke Cu-Ni deposit in hungriness area in the northern of Xinjiang. Element's anomalies of meobile were mainly in Fe-Mn oxide and salt. A Copper mineralization site in Xilekuduke anomaly area had been determined. A blind ore was foung by shallow seismic and geochemical method and a mineralization site was found outside this mining area in Puziwan gold deposit in shanxi province. A Gold mineralization site was found by 1:50000 geochemical exploration in Daliang, Inner Mongolia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the relations between the Machangqing rockbody which corresponds to the A-type granites and porphyry copper mineralization in terms of petrochemistry, trace element geochemistry, fluid inclusion geochemistry and isotope geochemistry. The results show that the Machangqing porphyry copper deposit was formed from the fluid predominated by mag-matic fluid. This kind of ore-forming fluid was just differentiated from the magma responsible for the A-type granites. therefore,as viewed from whereer they contain water or not,the A-type granites can,at least,be divided into two types: water-bearing and water-free.The water-bearing A-type granites can serve as the host ofporphyry copper deposits under certain geological conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

REE geochemistry data from the Fanshan alunite deposit indicated that its ore-forming materials came chiefly from the country rocks, with δCe〉0 for alunite ores. According to the differences in δEu, the alunite ores were divided into three types: weak negative Eu anomaly, weak positive Eu anomaly and remarkable positive Eu anomaly. The phenomena of Ce-enrichment in the ores indicated that the Fanshan alunite deposit was formed in an oxidizing environment. Variations in fO2 are corresponding to those in δEu: Eu anomaly varies from negative to positive with increasing fO2. And two other important factors may impact the occurrence of Eu anomalies: the contents of alkaline feldspar and the protolith structure in the mineralization period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Starting with the research status of bio-metallogenesis of Tl deposits and their geology, this work deals with the geological background of Tl enrichment and mineralization and the mechanism of bio- metal-logenesis of Tl deposits, as exemplified by Tl deposits in the low-temperature minerogenetic province. This research on the bio-metallogenesis of Tl deposits is focused on the correlations between bio-enrichment and Tl, the enrichment of Tl in micro-paleo-animals in rocks and ores, bio-fossil casts in Tl-rich ores, the involvement of bio-sulfur in minerogenesis and the enrichment of bio-genetic organic carbon in Tl ores. Thallium deposits have experienced two ore-forming stages: syngenetic bio- en-richment and epigenetic hydrothermal reworking (or transformation). Owing to the intense epigenetic hydrothermal reworking, almost no bio-residues remain in syngenetically bio-enriched Tl ores, thereby the Tl deposits display the characteristics of hydrothermally reoworked deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

锡的分布和成矿作用通常与花岗岩浆作用具有十分密切的联系。以往研究表明锡矿化与高度分异的S型花岗岩或陆壳改造型花岗岩具有密切的成因联系,但近年来随着大量与A型花岗岩有关的锡矿床的发现,人们开始关注A型花岗岩与锡成矿关系的研究。相对于与S型花岗岩有关的锡矿床来说,与A型花岗岩有关的锡矿床成成矿机理的研究积累少,研究程度相对较低。 湘南地区位于南岭多金属成矿带中部,是我国华南地区重要的有色金属成矿带。近年来在该成矿带上新发现的芙蓉超大型锡多金属矿床为世界瞩目,该矿床的形成与骑田岭花岗岩具有密切的时空关系。近年来研究显示骑田岭花岗岩具有A型花岗岩的特征。本文以芙蓉超大型锡多金属矿床和相关的骑田岭岩体为研究对象,在前人研究的基础上,运用岩石学、矿物学、流体包裹体、微量元素和稳定同位素地球化学等理论和方法,对芙蓉锡矿成矿流体的地球化学特征及其演化机制进行了系统的研究,并在此基础上探讨了骑田岭花岗岩体与芙蓉锡矿间的成因联系和芙蓉锡矿的成因机制。论文取得的主要认识包括以下几个方面: 1. 运用矿物学、岩石化学、微量元素地球化学以及同位素地球化学方法,进一步证实了骑田岭花岗岩体具有A型花岗岩的特征,总体具有偏铝质-弱过铝质、高硅富碱高钾的地球化学特征,早晚两期花岗岩具有同源岩浆演化特征,属于A2型花岗岩。同位素地球化学数据显示花岗岩体具有EMII型富集地幔的特征,形成于华南大陆地壳拉张减薄的构造环境,成岩过程中有地幔物质加入。 2. 通过对矿石矿物组构和成分的岩矿鉴定、扫描电镜和电子探针分析,确定了芙蓉锡多金属矿床原生夕卡岩形成于较氧化的环境,成岩作用主要与早期侵入的角闪石黑云母花岗岩密切相关,锡主要以Sn(IV)进入夕卡岩的造岩矿物晶体内。退蚀变夕卡岩、云英岩和蚀变花岗岩矿化为锡成矿主阶段,三种矿化类型的成矿流体具有相似的地球化学性质,即富Cl、Ti和Sn的特征,而锡石硫化物型矿石形成于成矿晚阶段。 3. 运用流体包裹体地球化学理论和方法以及激光拉曼分析技术,揭示了芙蓉锡矿的成矿流体组成、形成的物理化学条件和演化特征。芙蓉锡多金属矿田成矿流体为CO2-CH4-CaCl2- NaCl-KCl不混溶体系,成矿过程中发生流体不混溶作用。芙蓉锡矿成矿流体盐度为0~50.63 wt%NaCl eq.,密度为0.31~1.12g/cm3,主成矿阶段热液流体的均一温度主要集中在300-450℃,流体压力为179-1800bar,成矿晚阶段锡石硫化物型矿石中均一温度主要集中在150~300℃,流体压力为400-600bar。成矿流体特别是主成矿阶段的流体成矿过程中普遍发生了沸腾现象。从主成矿阶段到成矿晚阶段、矿化期后,热液流体盐度呈降低的趋势,流体成分也从含CO2、CH4的CaCl2-NaCl-KCl-H2O水溶液体系转化为不含CO2的简单NaCl-KCl-H2O水溶液体系。 4. 通过分析主要矿化类型矿石中脉石矿物的稀土元素和稳定同位素特征,揭示了成矿流体来源。研究表明芙蓉矿床成矿期热液脉石矿物的稀土元素地球化学和稳定同位素地球化学显示了与本区花岗岩具明显的相似性,骑田岭黑云母花岗岩形成过程中分异出的岩浆期后热液应是芙蓉矿床成矿流体的主要来源,成矿过程中有少量经过深循环的大气降水加入。 5. 在总结前人研究成果的基础上,综合上述研究,探讨了骑田岭花岗岩体与芙蓉锡矿间的成因联系和芙蓉锡矿的成因机制。本文认为骑田岭岩体中黑云母花岗岩与Sn成矿具有密切的成因联系,芙蓉锡矿田的成矿流体主要来源于黑云母花岗岩岩浆结晶期后分异出的富Cl和Sn的热液流体。芙蓉锡矿成矿流体中锡主要呈Sn(II)与氯离子形成亚锡氯络合物进行迁移,低温的大气降水与高温的岩浆热液流体混合,导致流体体系温度、盐度、压力的降低和富CO2相流体的分离(CO2去气作用),流体的氧逸度升高,使得Sn(II)与氯离子形成亚锡氯络合物解体,Sn(II)被氧化成SnO2并发生沉淀作用。这种流体的混合作用是导致锡石沉淀的最有效的机制。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

瑶岗仙钨矿区地处南岭中段,位于加里东隆起带与印支-燕山凹陷带的交汇地带。为了更深入地研究瑶岗仙钨矿成矿流体的性质和演化,在前人工作的基础上,本文结合流体包裹体的岩相学特征及其产出的构造特征,对瑶岗仙钨矿流体包裹体进行了显微测温和激光拉曼探针分析,从而确定了瑶岗仙钨矿成矿流体的性质,并进一步探讨了其成矿物质来源及成矿机制。 对瑶岗仙石英脉型钨矿床的石英、萤石和矽卡岩型钨矿床中石榴子石流体包裹体的岩相学特征研究表明,与成矿有关的包裹体主要有三类:富液相、富气相和含子晶多相包裹体。脉型钨矿床中石英的包裹体均一温度范围 180℃~300℃,盐度为 0.88~6.45 wt% NaCl;矽卡岩钨矿床中石榴子石包裹体均一温度范围为 190~300 ℃,盐度为 0.1~8.95 wt% NaCl,成矿溶液的密度为 0.70~1.05 g/cm3,说明形成两种类型矿床的流体均属中温、低密度、低盐度流体;两类矿床形成的压力为 32~38 MPa,成矿深度为 1~2 km,因此该矿床是在浅成、低压条件下形成的。激光拉曼探针测试表明,石榴石包裹体的气相成分以 H2O 为主,石英中包裹体的气相成分及其相对含量为 H2O>CO2>CH4>N2>H2S。由此说明,从矽卡岩型白钨矿阶段到石英脉型黑钨矿阶段,成矿流体中不断有 CH4、CO2和H2O 等挥发份的加入,此时的流体是一种介于岩浆与热液之间的过渡性流体,具有上部偏液、下部偏浆的特点。 根据前人的研究结果以及矿脉中花岗岩角砾的发现,泥盆系、寒武系岩层在花岗岩浆侵入过程中发生了混合岩化,成为成矿物质来源的基础,而真正的成矿母岩应该是深部的花岗岩体,由此推测“赋矿花岗岩并非成矿源岩”,很可能来自深部母岩浆中熔离出的流体。而 CH4 等还原组分的含量增多,推测也有可能来自相对是还原环境的地幔过渡带或软流圈中。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

中甸格咱地区是在晚三叠世甘孜-理塘洋盆向西俯冲过程中所形成的中甸弧的主弧带,区内岛弧火山活动和岩浆侵入活动均非常强烈,广泛分布有印支期斑岩体,同时发育有众多的与其有关的斑岩型和矽卡岩型矿床或矿点。普朗斑岩铜矿就是近年来在该区发现的一个大型乃至超大型矿床,目前已圈定5个矿化体,7个工业矿体,其中,主矿体探明铜资源量436.5万吨。 本论文主要从区域地质背景、矿床地质特征、元素地球化学、同位素地球化学、流体包裹体地球化学、矿床年代学及成矿机理等角度对普朗斑岩铜矿进行了较为系统的研究,主要获得如下认识: 普朗复式岩体具明显的多次脉动侵入特征,可分为三期:第一期为大面积分布的石英闪长玢岩(部分为二长闪长玢岩),第二期为岩体中心的石英二长斑岩和花岗闪长斑岩,第三期为岩脉状闪长玢岩。岩体具有典型的斑岩铜矿蚀变分带特征,由内向外依次为强硅化带(局部)→钾化硅化带→绢英岩化带→青磐岩化带。 矿化石英二长斑岩的锆石离子探针U-Pb年龄约为226~228Ma;钾化硅化带中黑云母的40Ar-39Ar坪年龄约为210~216Ma;含矿石英脉中辉钼矿Re-Os等时线年龄约为214Ma。 普朗岩体总体显示I型花岗岩类特征,属典型的钙碱性系列岩石。锶、钕、铅同位素特征显示其岩浆源区具有幔源物质(占主要地位)与壳源物质较为均匀混合的特征。金属硫化物的硫、铅同位素特征显示成矿元素与岩体具有密切的亲缘关系。脉石矿物的氢、氧、碳同位素特征和流体包裹体特征显示成矿流体自钾化阶段至网脉状矿化阶段均具岩浆流体特征。 根据不同期次的含矿石英脉中的流体包裹体特征,主要发现有四种流体:高盐度岩浆流体(盐度:34~54wt%NaCl)、含CO2低盐度流体(盐度:2.7~6.4wt%NaCl,XCO2:0.04~0.25)、中等盐度流体(盐度:19~25wt%NaCl)以及低盐度水溶液(盐度:<10wt%NaCl)。这些流体可能主要是原始岩浆流体演化至不同阶段的产物。 原始岩浆流体可能有两种来源:其一是斑岩侵入过程中自身分异的流体,其二是岩浆房中分异的流体。其中,岩浆房来源的岩浆流体对普朗岩体的蚀变及矿化作用起到了主导性作用。主成矿期金属硫化物的沉淀主要与流体系统开放后因其物理化学条件的变化而产生的流体相分离作用及流体对围岩的蚀变作用有关。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

金川矿床是超大型岩浆 Ni-Cu-PGE 硫化物矿床,它赋存有世界第三的镍储量(5.45×106 t,Ni 的平均品位为 1.2%)。该矿床位于华北板块西侧阿拉善地块西南边缘龙首山隆起中。本论文以金川矿区的 II 号岩体为研究对象,在系统整理前人工作的基础上,通过深入细致的野外地质考察和系统采样,选取有代表性的样品,进行详细的显微镜鉴定,并运用元素地球化学等手段,对 II 号岩体的源区特征、岩浆演化过程及其赋存的⑴、⑵号矿体的成矿机制等主要矿床学问题进行了系统成因研究,并尝试提出了二次硫化物熔离成矿模式。本论文主要取得以下几点结论性成果: 1)岩浆起源:起源于上地幔尖晶石-石榴石二辉橄榄岩过渡地带的下部。通过上地幔源岩的柱状部分熔融模式(≥25%)或三角部分熔融模式(10~15%),形成富PGE的S不饱和原始岩浆。 2)地壳同化混染:地壳物质的同化混染主要是由早期下地壳物质的同化混染和晚期上地壳物质的同化混染组成的多阶段同化混染,并且其成分为富钙质围岩。 3)结晶分异演化:金川II号岩体作为橄榄石堆积相,其橄榄石的结晶主要发生在上地壳深部岩浆房,而橄榄石与熔浆的反应及辉石和斜长石的结晶则主要发生在浅部岩浆房,既现今岩体所在位置。 4)S 的饱和机制:岩浆通道内下地壳物质的同化混染,导致岩浆硫饱和,并于岩浆通道中发生了第一次硫化物熔离;上地壳深部岩浆房中地壳物质的同化混染和橄榄石的分离结晶,促使硫饱和的母岩浆发生了第二次硫化物熔离。 5)深部岩浆房的演化:上地壳深部岩浆房中橄榄石分离结晶与硫化物熔离之后,在重力分异作用下,形成了自上而下的硅酸盐岩浆、橄榄石“晶粥”、含硫化物熔体的橄榄石“晶粥”以及矿浆的四层分层格局。同时,底部部分硫化物熔体发生了Pt合金(Pt-Fe)的脱离。 6)侵入期次:上地壳深部岩浆房中,母岩浆分异演化早期,其顶部含有尚未完全成长橄榄石颗粒的“晶粥”在构造应力挤压下首先上侵、成岩形成金川II号岩体顶部、呈“上悬体”的中细粒含辉橄榄岩;分层格局形成之后,橄榄石“晶 VI 粥”、含硫化物熔体的橄榄石“晶粥”以及矿浆依次上侵成岩、成矿,分别形成金川 II 号岩体上部的二辉橄榄岩相、⑴、⑵号矿体的主体以及⑵号矿体底部的块状矿石。