134 resultados para optical limiting.
Resumo:
Illumination of an optically levitated particle with an intensity-modulated transverse beam induces a transverse vibration of a particle in an optical trap. Based on this, the trapping force of a trap can be measured. Using an intensity-modulated longitudinal levitating beam causes a particle to move vertically, allowing for the determination of some aerodynamic parameters of a particle in air. The principles and the experimental phenomena are described and the initial results are given. (C) 1997 Optical Society of America.
Resumo:
With one weak probe field and two strong pumping fields, superluminal optical solitons are formed in a lifetime-broadened four-level tripod atomic medium. With proper parameters, both dark and bright solitons can occur in the highly resonant medium. The corresponding group velocity of the solitons can be superluminal. Meanwhile, the conditions for superluminal solitons occurrence are given.
Resumo:
We present the theoretical analysis and the numerical modeling of optical levitation and trapping of the stuck particles with a pulsed optical tweezers. In our model, a pulsed laser was used to generate a large gradient force within a short duration that overcame the adhesive interaction between the stuck particles and the surface; and then a low power continuous - wave (cw) laser was used to capture the levitated particle. We describe the gradient force generated by the pulsed optical tweezers and model the binding interaction between the stuck beads and glass surface by the dominative van der Waals force with a randomly distributed binding strength. We numerically calculate the single pulse levitation efficiency for polystyrene beads as the function of the pulse energy, the axial displacement from the surface to the pulsed laser focus and the pulse duration. The result of our numerical modeling is qualitatively consistent with the experimental result. (C) 2005 Optical Society of America.
Resumo:
We investigate the energy spectrum of fermionized bosonic atoms, which behave very much like spinless noninteracting fermions, in optical lattices by means of the perturbation expansion and the retarded Green's function method. The results show that the energy spectrum splits into two energy bands with single-occupation; the fermionized bosonic atom occupies nonvanishing energy state and left hole has a vanishing energy at any given momentum, and the system is in Mott-insulating state with a energy gap. Using the characteristic of energy spectra we obtained a criterion with which one can judge whether the Tonks-Girardeau (TG) gas is achieved or not.
Resumo:
We experimentally study the ac Stark splitting in D2 line of cold Rb-87 atoms. The frequency span between the Autler-Townes doublets is obviously larger than that derived from theoretical calculation. Two physical effects, which increase the effective Rabi frequency, contribute to the splitting broadening. First, atoms tend to distribute in strong lield places of a inhomogeneous red-detuned light field. Second, atoms reabsorb scattered light when they are huge in number and high in density.
Resumo:
With the method of Green's function, we investigate the energy spectra of two-component ultracold bosonic atoms in optical lattices. We End that there are two energy bands for each component. The critical condition of the superfluid-Mott insulator phase transition is determined by the energy band structure. We also find that the nearest neighboring and on-site interactions fail to change the structure of energy bands, but shift the energy bands only. According to the conditions of the phase transitions, three stable superfluid and Mott insulating phases can be found by adjusting the experiment parameters. We also discuss the possibility of observing these new phases and their transitions in further experiments.
Resumo:
We investigate the energy spectrum of ground state and quasi-particle excitation spectrum of hard-core bosons, which behave very much like spinless noninteracting fermions, in optical lattices by means of the perturbation expansion and Bogoliubov approach. The results show that the energy spectrum has a single band structure, and the energy is lower near zero momentum; the excitation spectrum gives corresponding energy gap, and the system is in Mott-insulating state at Tonks limit. The analytic result of energy spectrum is in good agreement with that calculated in terms of Green's function at strong correlation limit.
Resumo:
With one weak probe field and two strong pumping fields, the possibility of producing superluminal optical solitons is discussed in a lifetime-broadened inverted-Y atomic medium with proper parameters. As the group velocity of the solitons is larger than c, its occurrence can be controlled by modulating the intensities and the detunings of lasers.
Resumo:
This paper presents an experimental demonstration of light-induced evaporative cooling in a magneto-optical trap. An additional laser is used to interact with atoms at the edge of the atomic cloud in the trap. These atoms get an additional force and evaporated away from the trap by both the magnetic field and laser fields. There remaining atoms have lower kinetic energy and thus are cooled. It reports the measurements on the temperature and atomic number after the evaporative cooling with different parameters including the distance between the laser and the centre of the atomic cloud, the detuning, the intensity. The results show that the light-induced evaporative cooling is a way to generate an ultra-cold atom source.