199 resultados para micro-channels
Resumo:
The micro-scale gas flows are usually low-speed flows and exhibit rarefied gas effects. It is challenging to simulate these flows because traditional CFD method is unable to capture the rarefied gas effects and the direct simulation Monte Carlo (DSMC) method is very inefficient for low-speed flows. In this study we combine two techniques to improve the efficiency of the DSMC method. The information preservation technique is used to reduce the statistical noise and the cell-size relaxed technique is employed to increase the effective cell size. The new cell-size relaxed IP method is found capable of simulating micro-scale gas flows as shown by the 2D lid-driven cavity flows.
Resumo:
The investigation of the effect of micro impurity on crystal growth by optical microscopy has been validated. The results showed that the growth rate of a lysozyme crystal was affected even if the concentration of impurity of fluorescent-labeled lysozyme (abbreviation, F-lysozyme) was very small. Different concentrations of F-lysozyme had different effects on crystal growth rate. The growth rate decreased much more as F-lysozyme concentration increased. The density of incorporated F-lysozyme on different grown layers of a lysozyme crystal during crystal growth was obtained from the results of flat-bottomed etch pits density. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
For efficiently cooling electronic components with high heat flux, experiments were conducted to study the flow boiling heat transfer performance of FC-72 over square silicon chips with the dimensions of 10 × 10 × 0.5 mm3. Four kinds of micro-pin-fins with the dimensions of 30 × 60, 30 × 120, 50 × 60, 50 × 120 μm2 (thickness, t × height, h) were fabricated on the chip surfaces by the dry etching technique for enhancing boiling heat transfer. A smooth surface was also tested for comparison. The experiments were made at three different fluid velocities (0.5, 1 and 2 m/s) and three different liquid subcoolings (15, 25 and 35 K). The results were compared with the previous published data of pool boiling. All micro-pin-fined surfaces show a considerable heat transfer enhancement compared with a smooth surface. Flow boiling can remarkably decrease wall superheat compared with pool boiling. At the velocities lower than 1 m/s, the micro-pin-finned surfaces show a sharp increase in heat flux with increasing wall superheat. For all surfaces, the maximum allowable heat flux, qmax, for the normal operation of LSI chips increases with fluid velocity and subcooling. For all micro-pin-finned surfaces, the wall temperature at the critical heat flux (CHF) is less than the upper limit for the reliable operation of LSI chips, 85◦C. The largest value of qmax can reach nearly 148 W/cm2 for micro-pin-finned chips with the fin height of 120 μm at the fluid velocity of 2 m/s and the liquid subcooling of 35 K. The perspectives for the boiling heat transfer experiment of the prospective micro-pin-finned sur- faces, which has been planned to be made in the Drop Tower Beijing/NMLC in the future, are also presented.
Resumo:
By employing pump-probe back longitudinal diffractometry, the electron density and decay dynamics of a weak plasma channel created by a 1-KHz fs laser in air has been investigated. With ultrashort laser pulses of 50 fs and low energy of 0.6 mJ, we observe weak plasma channels with a length similar to 2 cm in air. An analytical reconstruction method of electron density has been analyzed, which is sensitive to the phase shift and channel size. The electron density in the weak plasma channel is extracted to be about 4x10(16) cm(-3). The diameters of the plasma channel and the filament are about 50 and 150 mu m, respectively, and the measurable electron density can be extended to less than 10(15) cm(-3). Moreover, a different time-frequency technique called linearly chirped longitudinal diffractometry is proposed to time-resolved investigate ultrafast ionization dynamics of laser-irradiated gas, laser interaction with cluster beam, etc.
Resumo:
As there exist some problems with the previous laser diode (LD) real-time microvibration measurement interferometers, such as low accuracy, correction before every use, etc., in this paper, we propose a new technique to realize the real-time microvibration measurement by using the LD sinusoidal phase-modulating interferometer, analyze the measurement theory and error, and simulate the measurement accuracy. This interferometer utilizes a circuit to process the interference signal in order to obtain the vibration frequency and amplitude of the detective signal, and a computer is not necessary in it. The influence of the varying light intensity and light path difference on the measurement result can be eliminated. This technique is real-time, convenient, fast, and can enhance the measurement accuracy too. Experiments show that the repeatable measurement accuracy is less than 3.37 nm, and this interferometer can be applied to real-time microvibration measurement of the MEMS. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Femtosecond pulsed lasers have been widely used for materials microprocessing. Due to their ultrashort pulse width and ultrahigh light intensity, the process is generally characterized by the nonthermal diffusion process. We observed various induced microstructures such as refractive-index-changed structures, color center defects, microvoids and microcracks in transparent materials (e.g., glasses after the femtosecond laser irradiation), and discussed the possible applications of the microstructures in the fabrication of various micro optical devices [e.g., optical waveguides, microgratings, microlenses, fiber attenuators, and three-dimensional (3D) optical memory]. In this paper, we review our recent research developments on single femtosecond-laser-induced nanostructures. We introduce the space-selective valence state manipulation of active ions, precipitation and control of metal nanoparticles and light polarization-dependent permanent nanostructures, and discuss the mechanisms and possible applications of the observed phenomena.
Resumo:
In this paper, a new type of guided-mode resonant grating (GMRG) filter with an antireflective surface called the 'moth-eye structure' for the multiple channels is presented by using rigorous coupled-wave analysis (RCWA) and the S-matrix method. Long range, low sidebands and multiple channels are found when the GMRG filters with antireflective surface are illuminated with incident polarization light. It is calculated that the multiple channel phenomenon can be shown when the depth of antireflective surface is increased. Moreover, the wavelengths of the multiple channels can be easily shifted by changing the depth of the homogenous layer which is under the antireflective surface, and the optical properties of GMRG filters such as low sideband reflection and narrow band are not badly spoiled when the depth is changed.
Resumo:
In this paper, a new type of resonant Brewster filters (RBF) with surface relief structure for the multiple channels is first presented by using the rigorous coupled-wave analysis and the S-matrix method. By tuning the depth of homogeneous layer which is under the surface relief structure, the multiple channels phenomenon is obtained. Long range, extremely low sidebands and multiple channels are found when the RBF with surface relief structure is illuminated with Transverse Magnetic incident polarization light near the Brewster angle calculated with the effective media theory of sub wavelength grating. Moreover, the wavelengths of RBF with surface relief structure can be easily shifted by changing the depth of homogeneous layer while its optical properties such as low sideband reflection and narrow band are not spoiled when the depth is changed. Furthermore, the variation of the grating thickness does not effectively change the resonant wavelength of RBF, but have a remarkable effect on its line width, which is very useful for designing such filters with different line widths at desired wavelength.