159 resultados para metal-ion detection
Resumo:
A capillary electrophoresis microchip coupled with a confocal laser-induced fluorescence (LIF) detector was successfully constructed for the analysis of trace amounts of heavy metals in environmental sources. A new fluorescence dye, RBPhOH, synthesized from rhodamine B, was utilized in a glass microchip to selectively determine copper with high sensitivity. A series of factors including running buffer concentration, detection voltage, and sample loading time were optimized for maximum LIF detector response and, hence, method sensitivity.
Resumo:
Since protein phosphorylation is a dominant mechanism of information transfer in cells, there is a great need for methods capable of accurately elucidating sites of phosphorylation. In recent years mass spectrometry has become an increasingly viable alternative to more traditional methods of phosphorylation analysis. The present study used immobilized metal affinity chromatography (IMAC coupled with a linear ion trap mass spectrometer to analyze phosphorylated proteins in mouse liver. A total of 26 peptide sequences defining 26 sites of phosphorylation were determined. Although this number of identified phosphoproteins is not large, the approach is still of interest because a series of conservative criteria were adopted in data analysis. We note that, although the binding of non-phosphorylated peptides to the IMAC column was apparent, the improvements in high-speed scanning and quality of MS/MS spectra provided by the linear ion trap contributed to the phosphoprotein identification. Further analysis demonstrated that MS/MS/MS analysis was necessary to exclude the false-positive matches resulting from the MS/MS experiments, especially for multiphosphorylated peptides. The use of the linear ion trap considerably enabled exploitation of nanoflow-HPLC/MS/MS, and in addition MS/MS/MS has great potential in phosphoproteome research of relatively complex samples. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
Amyloid beta peptide plays a critical role in the pathogenesis of Alzheimer's disease (AD). Metal ions are highly enriched in cerebral amyloid deposits in AD and are proposed to be able to mediate A beta conformation. Therefore, a rapid, low-cost, and sensitive detection of metal-induced A beta aggregation and their relation to AD is clearly needed for the clinical diagnosis and treatment. In this report, we study metal-induced A beta aggregation by a rapid, label-free electrochemical method and monitor both the aggregation kinetics and the morphology in the absence or presence of Zn (II) and Cu (II).
Resumo:
Here, we report a simple and Sensitive colorimetric detection method for Hg2+ ions With a tunable detection range based on DNA oligonucleotides and unmodified gold nanoparticles (DNA/AuNPs) sensing system. Complementary DNA strands with T-T mismatches could effectively protect AuNPs from salt-induced aggregation. While in the presence of Hg2+ ions T-Hg2+-T coordination chemistry leads to the formation of DNA duplexes, and AuNPs are less well protected thus aggregate at the same salt concentration, accompanying by color change from red to blue. By rationally varying the number of T-T mismatches in DNA oligonucleotides, the detection range could be tuned.
Resumo:
A novel Ruthenium(II) tris(bipyridine)-based solid-state electrochemiluminescence (ECL) sensor was developed in this paper. The sensor was fabricated by immobilising tris(2,2'-bipyridyl) ruthenium(II) (Ru(bpy)(3)(2+)) in sulfonic-functionalised porous titania (TiO2-SO3H) nanoparticles via an ion exchange strategy, followed by employing environment friendly and stable biopolymer chitosan (CHIT) to entrap Ru(bpy)(3)(2+)/TiO2-SO3H onto the ITO electrode.
Resumo:
Fluorescent oligonucleotide-stabilized Ag nanoclusters are demonstrated as novel and environmentally-friendly fluorescence probes for the determination of Hg2+ ions with a low detection limit and high selectivity.
Resumo:
Small molecules are difficult to detect by conventional surface plasmon resonance (SPR) spectroscopy due to the fact that the changes in the refractive index resulted from the binding process of small biomolecules are quite small. Here, we report a simple and effective method to detect small biomolecule using SPR spectroscopy and electrochemistry by catalyzed deposition of metal ions on SPR gold film. As an example, the ascorbic acid-mediated deposition of Ag on gold film was monitored by in situ SPR spectrum. The deposition of Ag atom on gold film resulted in an obvious decrease of depth in SPR angular scan curves of reflectance intensity and minimum reflectivity angle. The depth change of the SPR reflectance intensity and minimum reflectivity angle curves mainly relied on the amount of Ag atom deposited on gold film that can be controlled by the concentration of ascorbic acid. By monitoring the deposition of Ag atom on gold film, ascorbic acid was detected in the concentration range of 2 x 10(-5) M to 1 x 10(-3) M. After each of detections, the SPR sensor surface was completely regenerated by a potential step that stripped off the Ag atom. Furthermore, the regeneration process of the sensor surface provides the feasibility for detecting the concentration of ascorbic acid by electrochemical method.
Resumo:
In this paper, a novel monoaza-B15C5 derivative, N-(2-tosylamino)-isopentyl-monoaza-15-crown-5 (L), is used as an ionophore to facilitate alkali metal cations transfer across a water/1,2-dichloroethane (W/DCE) interface. Well-defined voltammetric behaviors are observed at the polarized W/DCE interfaces supported at micro- and nano-pipets except Cs+. The diffusion coefficient of this ionophore in the DCE phase is calculated to be equal to (3.3+/-0.2) x 10(-6) cm(2) s(-1). The experimental results indicate that a 1:1 (metal: ionophore) complex is formed at the interface with a TIC/TID mechanism. The selectivity of this ionophore towards alkali ions follows the sequence Na+ > Li+ > K+ > Rb+ > Cs+. The logarithm of the association constants (log beta(1)(0)) of the LiL+, NaL+, KL+ and RbL+ complexes in the DCE phase are calculated to be 10.6, 11.6, 9.0 and 7.1, respectively. The kinetic parameters are determined by steady-state voltammograms using nanopipets. The standard rate constants (k(0)) for Li+, Na+, K+ and Rb+ transfers facilitated by L are 0.54+/-0.05, 0.63+/-0.09, 0.51+/-0.04 and 0.46+/-0.06 cm s(-1), respectively. The pH values of aqueous solution have little effect on the electrochemical behaviors of these facilitated processes. The results predicate that this new type of ionophore might be useful to fabricate electrochemical sensor of sodium ion.
Resumo:
This paper describe a Ru(bpy)(3)(2+) based electrochemiluminescence (ECL) method to detect procyclidine in human urine following separation by capillary electrophoresis (CE). An ECL detection cell was designed for post-column addition of Ru(bpy)(3)(2+). Parameters affecting separation and detection were optimized, leading to a detection limit of 1 x 10(-9) mol/l in an on-capillary stacking mode. For application in urine, a cartridge packed with slightly acidic cation-exchange resin was used to eliminate the matrix effects of urine and improve the detection sensitivity. Extraction recovery was nearly 90%.
Resumo:
Monensin was incorporated into phospholipid/alkanethiol bilayers on the gold electrode surface by a new, paint-freeze method to deposit a lipid monolayer on the self-assembled monolayers (SAMs) of alkanethiol. The advantages of this assembly system with a suitable function for investigating the ion selective transfer across the mimetic biomembrane are based on the characteristics of SAMs of alkanethiols and monensin. On the one hand, the SAMs of alkanethiols bring out their efficiency of packing and coverage of the metal substrate and relatively long-term stability; on the other hand, monensin improves the ion selectivity noticeably. The selectivity coefficients K-Na+,K-K+, K-Na+,K-Rb+ and K-Na+,K-Ag+ are 6 x 10(-2), 7.2 x 10(-3) and 30 respectively. However, the selectivity coefficient K-Na+,K-Li+ could not be obtained by a potentiometric method due to the specific interaction between Li+ and phospholipid and the lower degree of complexion between Li+ and monensin. The potential response of this bilayer system to monovalent ions is fairly good. For example, the slope of the response to Na+ is close to 60 mV per decade and its linearity range is from 10(-1) to 10(-5) M with a detection limit of 2 x 10(-6) M, The bilayer is stable for at least two months without changing its properties. This monensin incorporated lipid/alkanethiol bilayer is a good mimetic biomembrane system, which provides great promise for investigating the ion transfer mechanism across the biomembrane and developing a practical biosensor.
Resumo:
A modified method for dispersing platinum particles on a glassy carbon (GC) electrode was investigated. The ultramicro Pt particle-modified electrode obtained exhibited high catalytic stability and activity towards the oxidation of some halide ions (Br-, I-) and inorganic sulfur species (S2O32-, SO32- and SCN-). These anions were separated and detected by using ion chromatography and electrochemical detection via this novel dispersed Pt particles-GC working electrode. The detection limits were 20 ng/ml for Br-, 1.0 ng/ml for I-, 10 ng/ml for SO32- and 4.0 ng/ml for SCN-. This method was employed for the analysis of industrial and environmental waste waters.
Resumo:
An electrochemical detector based on a polyaniline conducting polymer chemically modified electrode (PAn CME) was developed for use in flow-injection analysis and ion chromatography. Iodide, bromide, thiocyanate and thiosulphate are detected by using ion chromatography with a PAn CME electrochemical detector. The detection limits are 1, 5, 10 and 10 mgl-1, respectively. The CME response for electroinactive anions varies selectively with the mobile phase composition in flow-injection analysis. By this approach, perchlorate, sulphate, nitrate, iodide, acetate and oxalate can be detected conveniently and reproducibly over a linear concentration range of at least 3 orders of magnitude. The electrode is stable for over 2 weeks with no evidence of chemical or mechanical deterioration.
Resumo:
An electrochemical DNA biosensor was fabricated by immobilizing DNA probe on aluminum ion films that were electrodeposited on the surface of the stearic acid-modified carbon paste electrode (CPE). DNA immobilization and hybridization were characterized with cyclic voltammetry (CV) by using methylene blue (MB) as indicator. MB has a couple of well-defined voltammetric redox peaks at the CPE. The currents of redox peaks of MB decreased after depositing aluminum ion films on the CPE (Al(III)/CPE) and increased dramatically after immobilizing DNA probe (ssDNA/Al(III)/CPE). Hybridization of DNA probe led to a marked decrease of the peak currents of MB, which can be used to detect the target single-stranded DNA. The conditions for the preparation of Al(III)/CPE, and DNA immobilization and hybridization were optimized. The specific sequences related to bar transgene in the transgenic corn and the PCR amplification of CP4 epsps gene from the sample of transgenic roundup ready soybean were detected by differential pulse voltammetry (DPV) with this new electrochemical DNA biosensor. The difference between the peak currents of MB at ssDNA/Al(III)/CPE and that at hybridization DNA modified electrode (dsDNA/Al(III)/CPE) was applied to determine the Specific sequence related to the target bar gene with the dynamic range comprised between 1.0 X 10(-7) mol/L to 1.0 x 10(-4) mol/L. A detection limit of 2.25 x.10(-8) mol/L. of oligonucleotides can be estimated.