88 resultados para late Paleozoic
Resumo:
A series of reactor blends of linear and branched polyethylenes have been prepared, in the presence of modified methylaluminoxane, using a combination of 2,6-bis[1(2,6-dimethyphenylimino) pyridyl]-cobalt(II) dichloride (1), known as an active catalyst for producing linear polyethylene, and [1,4-bis(2,6-diidopropylphenyl)] acenaphthene diimine nickel(II) dibromide (2), which is active for the production of branched polyethylene. The polymerizations were performed at various levels of catalyst feed ratio at 10 bar. The linear correlation between catalyst activity and concentration of catalyst 2 suggested that the catalysts performed independently from each other. The weight-average molecular weights ((M) over bar (w)), crystalline structures, and phase structures of the blends were investigated, using a combination of gel permeation chromatography, differential scanning calorimetry, wide-angle X-ray diffraction, and small angle X-ray scattering techniques. It was found that the polymerization activities and MWs and crystallization rate of the polymers took decreasing tendency with the increase of the catalyst 2 ratios, while melting temperatures (T-m), crystalline temperatures (T,), and crystalline degrees took decreasing tendency. Long period was distinctly influenced by the amorphous component concentration.
Resumo:
Based on high resolution 2D and 3D seismic data acquired in recent years, using sequence stratigraphy analysis and geophysical methods, we discuss the features of Late Cenozoic deepwater sedimentation in the southern Qiongdongnan (sic) basin. The study area entered a bathyal slope environment in the Miocene. The channel developed in the Sanya (sic) Formation was controlled by a fault break, and its shingled seismic characteristics represent multiple erosion and fill, which may indicate that turbidite current developed in the slope environment. The polygon faults found in mudstone of the Meishan (sic) Formation represent the deepwater hungry sedimentary environment. The large-scale channels developed on the top of Huangliu (sic) Formation could be the result of a big sea level drop and an increase of sediment supply. The fantastic turbidite channel developed in Late Quaternary in the slope environment has "fan-like" body and long frontal tiny avulsion channel. The analysis of these features suggests that the sediment supply of the study area in the post-rifting period was dominant from the Vietnam uplift in the southwest. These deepwater sedimentary features could be potential reservoirs or migration pathways for deepwater petroleum systems.
Resumo:
The Lhasa terrane, located between the Bangonghu-Nujiang suture zone and the Indus-Yalung Tsangpo suture zone in the southern Tibetan Plateau, was considered previously as a Precambrian continental block. Mesozoic and Cenozoic tectonic evolution of the Lhasa terrane is closely related to the subduction of the Tethys ocean and the collision between the Indian and European continents; so it is one of the keys to reveal the formation and evolution of the Tibetan plateau. The garnet two-pyroxene granulite which was found at the Nyingtri rock group of the southeastern Lhasa terrene consists of garnet, clinopyroxene, orthopyroxene, labradorite, Ti-rich amphibolite and biotite, with a chemical composition of mafic rock. The metamorphic conditions were estimated to be at T = 747 similar to 834 degrees C and P = 0.90 similar to 1.35GPa, suggesting a formation depth of 45km. The zircon U-Pb dating for the garnet amphibolite and marble associated with the granulite give a metamorphic age of 85 similar to 90Ma. This granulite-facies metamorphic event together with a contemporaneous magmatism demonstrated that the southern Lhasa terrane has undergone an Andean-type orogeny at Late Mesozoic time.
Resumo:
On the basis of accelerator mass spectrometer radiocarbon (AMS C-14) dating, sedimentation rates of 11 cores collected from the northern to southern Okinawa Trough are discussed. The sedimentation rates in the Okinawa Trough roughly range from 11 to 39 cm/ka, and the average is 23.0 cm/ka. China's continental matter is the main sediment source of the middle Okinawa Trough and has important contribution to the northern and southern Okinawa Trough. The sedimentation rates during the marine oxygen isotope (MI5) 2 are uniformly higher than those during MIS 1 in the northern and middle Okinawa Trough while they are on the contrary in the southern Okinawa Trough. Sedimentation rates in the Okinawa Trough can be one of the proxies of sediment source and an indicator of cooling events.
Resumo:
Based on the analyses of foraminifer and accelerator mass spectrometer radiocarbon dating in DGKS9603 core from mid-Okinawa Trough close to bottom, oscillation curve, which expressed the relation between the surface water temperature and the depth, has been obtained by using foraminifer analysis and calculation of FP-12E transfer function. The whole core indicated seven cold phases and eight warm phases. Obvious expression of low temperature event during Middle and Late Holocene, YD,H1,H2,H3 and H4 events, as well as the short cold phase during the middle last glacial period, implied that short shifts since 50 kaBP would have been global significance. Sedimentation rate during cold phases is usually faster than that in warm stages, with the lowest rate in Holocene, which may be connected with rising sea level and principal axial of Kuroshio Current moving to west. Volcanic activities highly developed in Okinawa Trough during the Quaternary period, thus abundant volcanic glass and pumice were well preserved.
Resumo:
Based on the study of palaeo-environmental evolution in the shelves of the Eastern China Seas, the concept of ''shelf desertization'' in the late stage of Upper Pleistocene is defined; the environmental background and evolutionary process of shelf desertization are analysed. Study on the records of subbottom profiling and the data of core samples from shelf areas revealed that during low sea-level stages, the sedimentary environment in the exposed shelf plains was dominated by aeolian depositional process under cold and dry climatic conditions, i.e. under the action of strong winter-monsoon winds. Parts of the exposed marine strata were disintegrated, and aeolian sand dunes were formed on the disintegrated marine deposits, from which the finer sediment grains were blown away by wind and deposited in the downwind areas to form the derivative loess deposits. Thus a desertization environmental system was formed in the exposed shelf plains of the Eastern China Seas.
Resumo:
The evolution and variation history of the Tsushima warm current during the late Quaternary was reconstructed based on the quantitative census data of planktonic foraminiferal fauna, together with oxygen and carbon isotope records of mixed layer dweller a ruber and thermocline dweller N. dutertrei in piston core CSH1 and core DGKS9603 collected separately from the Tsushima warm current and the Kuroshio dominated area. The result showed that the Tsushima warm current vanished in the lowstand period during 40-24 cal ka BP, while the Kuroshio still flowed across the Okinawa Trough, arousing strong upwelling in the northern Trough. Meanwhile, the influence of freshwater greatly increased in the northern Okinawa Trough, as the broad East China Sea continental shelf emerged. The freshwater reached its maximum during the last glacial maximum (LGM), when the upwelling obviously weakened for the lowest sea-level and the depression of the Kuroshio. The modern Tsushima warm current began its development since 16 cal ka BP, and the impact of the Kuroshio increased in the middle and northern Okinawa Trough synchronously during the deglaciation and gradually evolved as the main water source of the Tsushima current. The modern Tsushima current finally formed at about 8.5 cal ka BP, since then the circulation structure has been relatively stable. The water of the modern Tsushima current primarily came from the Kuroshio axis. A short-term wiggle of the current occurred at about 3 cal ka BP, probably for the influences from the enhancement of the winter monsoon and the depression of the Kuroshio. The cold water masses greatly strengthened during the wiggle.
Resumo:
Sedimentary basins in the Yellow Sea can be grouped tectonically into the North Yellow Sea Basin (NYSB), the northern basin of the South Yellow Sea (SYSNB) and the southern basin of the South Yellow Sea (SYSSB). The NYSB is connected to Anju Basin to the east. The SYSSB extends to Subei Basin to the west. The acoustic basement of basins in the North Yellow Sea and South Yellow Sea is disparate, having different stratigraphic evolution and oil accumulation features, even though they have been under the same stress regime since the Late Triassic. The acoustic basement of the NYSB features China-Korea Platform crystalline rocks, whereas those in the SYSNB and SYSSB are of the Paleozoic Yangtze Platform sedimentary layers or metamorphic rocks. Since the Late Mesozoic terrestrial strata in the eastern of the NYSB (West Korea Bay Basin) were discovered having industrial hydrocarbon accumulation, the oil potential in the Mesozoic strata in the west depression of the basin could be promising, although the petroleum exploration in the South Yellow Sea has made no break-through yet. New deep reflection data and several drilling wells have indicated the source rock of the Mesozoic in the basins of South Yellow Sea, and the Paleozoic platform marine facies in the SYSSB and Central Rise could be the other hosts of oil or natural gas. The Mesozoic hydrocarbon could be found in the Mesozoic of the foredeep basin in the SYSNB that bears potential hydrocarbon in thick Cretaceous strata, and so does the SYSSB where the same petroleum system exists to that of oil-bearing Subei Basin.
Resumo:
From systemic research of microstructure, geochemistry, uranium-series and Be-10 isotope dating on a new-type deepwater ferromanganese crust from the East Philippine Sea, the paleoenvironment evolution of the target area since the terminal Late Miocene was recovered. The vertical section changes of microstructure and chemical composition are consistent in the studied crust, which indicate three major accretion periods and corresponding paleoenvironment evolution of the crust. The bottom crust zone was formed in the terminal Late Miocene (5.6 Ma) with loose microstructure, high detritus content and high growth rate. Reductions of mineral element content, accretion rate and positive Ce-anomaly degree at 4.6 Ma indicate temporal warming, which went against the crust accretion and finally formed an accretion gap in the terminal Middle Pliocene (2.8-2.7 Ma). The more active Antarctic bottom seawaters in the Late Pliocene (2.7 Ma) facilitated the fast transfer to the top pure crust zone. Hereafter, with the further apart of volcanic source and the keeping increase of eolian material (1.0 Ma), although surrounding conditions were still favorable, mineral element content still shows an obvious reducing trend. It thereby offers new carrier and data for the unclear paleoceanographic research of the target area since the terminal Late Miocene.
Resumo:
The late stage of the North East Atlantic (NEA) spring bloom was investigated during June 2005 along a transect section from 45 to 66 degrees N between 15 and 20 degrees W in order to characterize the contribution of siliceous and calcareous phytoplankton groups and describe their distribution in relation to environmental factors. We measured several biogeochemical parameters such as nutrients, surface trace metals, algal pigments, biogenic silica (BSi), particulate inorganic carbon (PIC) or calcium carbonate, particulate organic carbon, nitrogen and phosphorus (POC, PON and POP, respectively), as well as transparent exopolymer particles (TEP). Results were compared with other studies undertaken in this area since the JGOFS NABE program. Characteristics of the spring bloom generally agreed well with the accepted scenario for the development of the autotrophic community. The NEA seasonal diatom bloom was in the late stages when we sampled the area and diatoms were constrained to the northern part of our transect, over the Icelandic Basin (IB) and Icelandic Shelf (IS). Coccolithophores dominated the phytoplankton community, with a large distribution over the Rockall-Hatton Plateau (RHP) and IB. The Porcupine Abyssal Plain (PAP) region at the southern end of our transect was the region with the lowest biomass, as demonstrated by very low Chla concentrations and a community dominated by picophytoplankton. Early depletion of dissolved silicic acid (DSi) and increased stratification of the surface layer most likely triggered the end of the diatom bloom, leading to coccolithophore dominance. The chronic Si deficiency observed in the NEA could be linked to moderate Fe limitation, which increases the efficiency of the Si pump. TEP closely mirrored the distribution of both biogenic silica at depth and prymnesiophytes in the surface layer suggesting the sedimentation of the diatom bloom in the form of aggregates, but the relative contribution of diatoms and coccolithophores to carbon export in this area still needs to be resolved.
Resumo:
Based on fine structural interpretation on seismic profiles of buried-hills in Huanghua depression, structural interpretation and balanced cross-section restoration of regional seismic profiles, drawing structural maps of main seismic interfaces, residual strata distribution of different ages in the Bohai Bay region and structural survey in the western Shandong uplifted area and the intracontinental orogeny of Yanshan mountain, the paper has studied pre-tertiary structural styles and tectonic evolution of the Bohai Bay region. There mainly develop 5 types of pre-tertiary structural style that are extension structure, compression structure, strike-slip structure, negative inversion structure and sliding structure in the Bohai Bay region. Among these 5 types of structural style, extension structure develops detachment fault and its controlling fault terrain structure and fault break slop; compression structure develops reverted fold, fault propagation fold, fault bent fold, imbricate thrust structure and triangle zone; strike-slip structure develops positive flower structure, negative flower structure, en-echelon structure and brush structure; negative reversion structure develops Indosinian compression and Yanshanian extension negative reversion structure, late Yanshanian compression and Cenozoic extension negative reversion structure; sliding structure develops interlayer sliding structure and detachment structure. According to Cangdong fault of SN direction, Zhangjiakou – Penglai fault and Qihe – Guangrao fault of NWW direction, the Bohai Bay region can be divided into 6 sub-regions in which structural direction and style is different from each other. Structural maps of bottom boundary of Cenozoic and upper Paleozoic manifest that main NNE structural direction is formed from late Yanshanian to Himalayan movement and minor NWW structural direction and a string of area more than 8000m are mainly suggest that Indosinian tectonic pattern strongly influence on Yanshanian and Himalayan movement. Residual strata distribution characteristics of middle to upper Neoproterozoic in the Bohai Bay region manifest that middle- to neo- aulacogen position may be corresponding to late Mesozoic uplifted zone. Residual Paleozoic distribution characteristics of main ENN suggest that structural alteration should be resulted from late Yanshanian to Himalayan movement while which of minor NWW structures suggest that deeper structure should restrict shallower structure. Structural patterns of main EW fold direction in the Bohai Bay region and thrust structure in eastern part are formed late Triassic in studied area. Granite magma intrusion of early to middle Jurassic mainly develops Yanshan mountain zone. Late Mesozoic rifting basins of NEE direction are widely distributed in the Bohai Bay region and granite magma intrusions are mainly distributed in Tancheng – Rongcheng zone. Mesozoic structural evolution in the Bohai Bay region is related to scissor convergent from east to west between North China plate and Yangtze plate and gradually reinforcing of the west circum-pacific tectonic tract while basin and range province of late Jurassic and early Cretaceous may be mainly related to lithospheric thinning of North China craton in late Mesozoic.
Resumo:
The oil and gas potential of Northeast Asia is enormous, but the degree of exploration is very low in Northeast Asia (the degree is below 3%-10%).The reasons are as follows: First, it is relatively difficult to study the oil and gas bearing basins(OGB), which are of multiple types, in different tectonic settings, with complex geologic frameworks and with long-term geologic evolution. Secondly, because of the non-equilibrium in development of economy and regional market, application of theories and techniques and the research levels in different countries, the conclusions are not conformable, and even contradictory. Thirdly, most of the former researches were limited to one territory or one basin, and lack of systematical and in-depth study on geotectonic evolution, classification of basins, and the evaluation of hydrocarbon resources. In this thesis, integrated study of the regional tectonic feature and basin features of Northeast Asia was done, to understand the basin evolution history and the controlling action on oil and gas. Then, new conclusions are and exploration proposals are as following: 1. Geotectonic evolution in Northeast Asia: The main structural motion system in Paleozoic Era was longitudinal, and in Meso-cenozoic was latitudinal with the Pacific Ocean. The whole evolution history was just the one of pulling-apart, cutting-out, underthrusting and collision of the Central Asia- Mongolia Ocean and the Pacific Ocean. 2. The evolution characteristics of basins in Northeast Asia: mainly developed from longitudinal paste-up, collision and relaxation rifting motion in Paleozoic-Early Mesozoic Era and from underthrust, accretion, and receding of subducted zone of the Pacific Ocean in Late Mesozoic Era-Cenozoic Era. 3. The research in basin classification of Northeast Asia: According to geotectonic system, the basins can be classified into three types: intracratonic, pericratonic and active zone basin. And they can be further classified into 18 different types according to genetic mechanism and dynamic features. 4. The master control factors of oil and gas accumulation in Northeast Asia: high quality cap-rock for craton and pericrationic basin, the effective source rock and high quality cap-rock for Mesozoic rifted basins, intra-arc, fore-arc and back-arc basins. Graded exploration potential of oil and gas for basin in Northeast Asia according to 7 factor, hereby, divided the oil and gas potential of basins into 5 levels. 5. Evaluation of hydrocarbon resources: The difference of resource potential among these basins is huge in Northeast Asia. The evaluation of Mesozoic rifted basin and Pacific Ocean basin showed that the large scale rifted basin and retroarc basin(including backarc marginal sea basin) have great resource potential. 6. The writer believes that the next step should pay more attention to the evaluation of petroleum resource in Far East part of Russia and trace them. On the other hand, according to integrated analysis of oil/gas resource potential and the operation difficulty in this area, suggests that East-Siberia basin, East-Gobi-Tamchag basin, Sakhalin basin, North-Okhotck basin, West-Kamchatka basin could be as cooperation priority basins in future.
Resumo:
Based on geophysical and geological data in Jiyang depression, the paper has identified main unconformity surfaces (main movement surfaces) and tectonic sequences and established tectonic and strata framework for correlation between different sags. Based on different sorts of structural styles and characteristics of typical structures, the paper summarized characteristics and distribution of deep structures, discussed evolution sequence of structure, analyzed the relation between tectonic evolution and generation of petroleum. The major developments are as following: Six tectonic sequences could be divided from bottom to top in the deep zone of Jiyang depression. These tectonic sequences are Cambrian to Ordovician, Carboniferous to Permian, lower to middle Jurassic, upper Jurassic to lower Cretaceous, upper Cretaceous and Kongdian formation to the fourth member of Shahejie formation. The center of sedimentation and subsidence of tectonic sequences distinguished from each other in seismic profiles is controlled by tectonic movements. Six tectonic evolution stages could be summarized in the deep zone in Jiyang depression. Among these stages, Paleozoic stage is croton sedimentation basin; Indosinian stage, open folds of EW direction are controlled by compression of nearly SN direction in early Indosinian (early to middle Triassic) while fold thrust fault of EW – NWW direction and arch protruding to NNE direction are controlled by strong compression in late Indosinian (latter Triassic); early Yanshanian stage (early to middle Jurassic), in relatively weak movement after Indosinian compressional orogeny, fluviolacustrine is deposited in intermontane basins in the beginning of early Yanshanian and then extensively denudated in the main orogenic phase; middle Yanshanian (late Jurassic to early Cretaceous), strike-slipping basins are wide distribution with extension (negative reversion) of NW – SE direction; latter Yanshanian (late Cretaceous), fold and thrust of NE – NNE direction and positive reversion structure of late Jurassic to early Cretaceous strike-slipping basin are formed by strong compression of NW–SE direction; sedimentation stage of Kongdian formation to the fourth member of Shahejie formation of Cenozoic, half graben basins are formed by extension of SN direction early while uplift is resulted from compression of nearly EW direction latterly. Compression system, extension system and strike-slip system are formed in deep zone of Jiyang depression. According to identifying flower structure of seismic profiles and analysis of leveling layer slice of 3D seismic data and tectonic map of deep tectonic interface, strike-slip structures of deep zone in Jiyang depression are distinguished. In the middle of the Jiyang depression, strike-slip structures extend as SN direction, NNW direction in Huimin sag, but NNE in Zhandong area. Based on map of relict strata thickness, main faults activity and regional tectonic setting, dynamic mechanisms of deep structure are preliminary determination. The main reason is the difference of direction and character of the plate’s movement. Development and rework of multi-stage tectonic effects are benefit for favorable reservoir and structural trap. Based on tectonic development, accumulation conditions of deep sub-sags and exploration achievements in recent years, potential zones of oil-gas reservoir are put forward, such as Dongying sag and Bonan sag.