73 resultados para inorganic phosphate-solubilizing bacteria
Resumo:
Microcystis aeruginosa Kutz. 7820 was cultured at 350 and 700 muL.L-1 CO2 to assess the impacts of doubled atmospheric CO2 concentration on this bloom-forming cyanobacterium. Doubling Of CO2 concentration in the airflow enhanced its growth by 52%-77%, with pH values decreased and dissolved inorganic carbon (DIC) increased in the medium. Photosynthetic efficiencies and dark respiratory rates expressed per unit chl a tended to increase with the doubling of CO2. However, saturating irradiances for photosynthesis and light-saturated photosynthetic rates normalized to cell number tended to decrease with the increase of DIC in the medium. Doubling of CO2 concentration in the airflow had less effect on DIC-saturated photosynthetic rates and apparent photosynthetic affinities for DIC. In the exponential phase, CO2 and HCO3- levels in the medium were higher than those required to saturate photosynthesis. Cultures with surface aeration were DIC limited in the stationary phase. The rate of CO2 dissolution into the liquid increased proportionally when CO2 in air was raised from 350 to 700 muL.L-1, thus increasing the availability of DIC in the medium and enhancing the rate of photosynthesis. Doubled CO2 could enhance CO2 dissolution, lower pH values, and influence the ionization fractions of various DIC species even when the photosynthesis was not DIC limited. Consequently, HCO3- concentrations in cultures were significantly higher than in controls, and the photosynthetic energy cost for the operation of CO2 concentrating mechanism might decrease.
Resumo:
The size structure of the planktonic community in a Changjiang floodplain lake (Lake Chenhu, Hubei, P. R. China) was described for the inundation period of May through September 1983. The modality of the Sheldon-type size distributions changed hydrographically with the spectral profiles being bimodal during low, rising, mid-high and falling water phases, and trimodal soon after filling and shortly before falling. The modal peaks corresponded respectively to the dominant organisms of chlorophytes and nauplii, while the troughs centered on the bacteria and macrocrustacean size classes in the lake. The slope of the normalized biomass spectrum (an index of plankton size distribution) was less than -1.0 for the filling and falling phases or close to -1.0 for the high water period, indicating that the planktonic biomass tended to decrease or evenly distributes across logarithmically ordered size classes, respectively. This observed variation in the size distribution of the plankton community mainly resulted from changes in water levels and contents of particulate inorganic matter (PIM) in the lake.
Resumo:
ZnO nanocrystals were synthesized by hydrolysis in methanol. X-ray diffraction and photoluminescence spectra confirm that good crystallized ZnO nanoparticles were formed. Utilizing those ZnO nanoparticles and poly [2- methoxy-5 - (3',7'-dimethyloctyloxy)- 1,4-phenylenevinylene] (MDMO-PPV), light emitting devices with indium tin oxide (ITO)/poly(3,4-oxyethyleneoxy-thiophene):poly(styrene sulfonate) (PEDOT:PSS)/ ZnO:MDMO-PPV/Al and ITO/PEDOT:PSS/MDMO-PPV/Al structures were fabricated. Electrolummescence (EL) spectra reveal that EL yield of hybrid MDMO-PPV and ZnO nanocrystals devices increased greatly as compared with pristine MDMO-PPV devices. The current-voltage characteristics indicate that addition of ZnO nanocrystals can facilitate electrical injection and charge transport. The decreased energy barrier to electron injection is responsible for the increased efficiency of electron injection. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Monomers of methacrylate with various pi -conjugated pendants were designed and prepared in our laboratory, The monomer with suitable end-group was successfully assembled with nano-scale inorganic particles to form an orderly-aligned structure that showed special optical properties, both absorption and emission band were much red-shifted compared with the monomer, A new type of organic/inorganic hybrid materials was obtained by in situ polymerization of the assembly, The hybrid materials could also show special optical properties as the assembly, This might open a new route to tune the emission color.
Resumo:
National Natural Science Foundation of China 60753001
Resumo:
SnS/SnO heterojunction structured nanocrystals with zigzag rod-like connected morphology were prepared by using a simple two-step method. Bulk heterojunction solar cells were fabricated using the SnS/SnO nanocrystals blended with poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene) (MDMO-PPV) as the active layer. Compared with solar cells using SnS nanoparticles hybridized with MDMO-PPV as the active layer, the SnS/SnO devices showed better performance, with a power conversion efficiency higher by about one order in magnitude.
Resumo:
In this study, the possibility of establishing a dual-species biofilm from a bacterium with a high biofilm-forming capability and a 3,5-dinitrobenzoic acid (3,5-DNBA)-degrading bacterium, Comamonas testosteroni A3, was investigated. Our results showed that the combinations of strain A3 with each of five strains with a high biofilm-forming capability (Pseudomonas sp. M8, Pseudomonas putida M9, Bacillus cereus M19, Pseudomonas plecoglossicida M21 and Aeromonas hydrophila M22) presented different levels of enhancement regarding biofilm-forming capability. Among these culture combinations, the 24-h dual-species biofilms established by C. testosteroni A3 with P. putida M9 and A. hydrophila M22 showed the strongest resistance to 3,5-DNBA shock loading, as demonstrated by six successive replacements with DMM2 synthetic wastewater. The degradation rates of 3,5-DNBA by these two culture combinations reached 63.3-91.6% and 70.7-89.4%, respectively, within 6 h of every replacement. Using the gfp-tagged strain M22 and confocal laser scanning microscopy, the immobilization of A3 cells in the dual-species biofilm was confirmed. We thus demonstrated that, during wastewater treatment processes, it is possible to immobilize degrader bacteria with bacteria with a high biofilm-forming capability and to enable them to develop into the mixed microbial flora. This may be a simple and economical method that represents a novel strategy for effective bioaugmentation.