87 resultados para immune monitoring
Resumo:
Metallothionein (MT) is a superfamily of cysteine-rich proteins contributing to metal metabolism, detoxification of heavy metals, and immune response such as protecting against ionizing radiation and antioxidant defense. A metallothionein (designated AiMT2) gene was identified and cloned from bay scallop, Argopecten irradians. The full length cDNA of AiMT2 consisted of an open reading frame (ORF) of 333 bp encoding a protein of 110 amino acids. with nine characteristic Cys-X-Cys, five Cys-X-X-Cys, five Cys-X-X-X-Cys and two Cys-Cys motif arrangements and a conserved structural pattern Cys-x-Cys-x(3)-Cys-Tyr-x(3)Cys-x-Cys-x(3)-Cys-x-Cys-Arg at the C-terminus. The cloned ANT showed about 50% identity in the deduced amino acid sequence with previously published MT sequences of mussels and oysters. The conserved structural pattern and the close phylogenetic relationship of AiMT2 shared with MTs from other mollusc especially bivalves indicated that AiMT2 was a new member of molluscan MT family. The mRNA transcripts in hemolymph of AiMT2 under cadmium (Cd) exposure and bacteria challenge were examined by real-time RT-PCR. The mRNA expression of AiMT2 was up-regulated to 3.99-fold at 2 h after Listonella anguillarum challenge, and increased drastically to 66.12-fold and 126.96-fold at 16 and 32 h post-challenge respectively. Cadmium ion exposure could induce the expression of AiMT2, and the expression level increased 2.56-fold and 6.91-fold in hemolymph respectively after a 10-day exposure of 100 mu g L-1 and 200 mu g L-1 CdCl2. The sensitivity of AiMT2 to bacteria challenge and cadmium stress indicated it was a new Cd-dependent MT in bay scallop and also regulated by an immune challenge. The changes in the expression of AiMT2 could be used as an indicator of exposure to metals in pollution monitoring programs and oxidative stress, and bay scallop as a potential sentinel organism for the cadmium contamination in aquatic environment. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
C-type lectins are a superfamily of carbohydrate-recognition proteins which play crucial roles in the innate immunity. In this study, a novel multidomain C-type lectin gene from scallop Chlamys farreri (designated as Cflec-4) was cloned by RACE approach based on EST analysis. The full-length cDNA of Cflec-4 was of 2086 bp. The open reading frame was of 1830 bp and encoded a polypeptide of 609 amino acids, including a signal sequence and four dissimilar carbohydrate-recognition domains (CRDs). The deduced amino acid sequence of CflecA shared high similarities to other C-type lectin family members. The phylogenetic analysis revealed the divergence between the three N-terminal CRDs and the C-terminal one, suggesting that the four CRDs in Cflec-4 originated by repeated duplication of different primordial CRD. The potential tertiary structure of each CRD in Cflec-4 was typical double-loop structure with Ca2+-binding site 2 in the long loop region and two conserved disulfide bridges at the bases of the loops. The tissue distribution of Cflec-4 mRNA was examined by fluorescent quantitative real-time PCR. In the healthy scallops, the Cflec-4 transcripts could be only detected in gonad and hepatopancreas, whereas in the Listonella anguillarum challenged scallops, it could be also detected in hemocytes. These results collectively suggested that CflecA was involved in the immune defense of scallop against pathogen infection and provided new insight into the evolution of C-type lectin superfamily. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
MEP is a member of thioester-containing protein (TEP) family found in Zhikong scallop Chlamys farreri and is involved in innate immunity against invading microbes. In the present study, the genomic DNA of CfTEP was cloned and characterized. The genomic DNA sequence of CfTEP consisted of 40 exons and 39 introns spanning 35 kb with all exon-intron junction sequences agreeing with the GT/AG consensus. The genomic organization of CfTEP was similar to human and mouse 0 rather than ciona C3-1 and Drosophila dTEP2. By RT-PCR technique, seven different cDNA variants of CfTEP (designated as CfTEP-A-CfTEP-G) were cloned from scallop gonad. CfTEP-A-CfTEP-F were produced by alternative splicing of six mutually exclusive exons (exons 19-24), respectively, which encoded the highly variable central region. While in CfTEP-G, the deletion of all the six exons introduced a new translation stop site and might trigger nonsense mediated decay (NMD). The mRNA expression and the proportion of the seven CfTEP variant transcripts were examined in the gonad of scallops after bacterial challenge. The fragments containing the highly variable central region of UTEP were amplified by RT-PCR and a 100 positive clones were sequenced randomly. The expression profiles of the seven MEP variants were different and displayed the sex and bacteria dependent manner. In the blank, sea water and Listonella anguillarum challenged subgroups of male scallops, all the transcripts detected were CfTEP-G isoform. In the Micrococcus luteus challenged subgroup, the isoforms expressed and their proportions were CfTEP-F (54%), CfTEP-B (23%), CfTEP-A (10%), CfTEP-C (7%) and CfTEP-E (6%). However, in the gonad of female scallops, only CfTEP-A were found in blank and sea water challenged subgroups. After L anguillarum or M. luteus challenge, four and five isoforms were detected, respectively, with CfTEP-F isoform being the most one in the both subgroups. These results suggested that the evolution of TEP genes was very complex, and that the diverse CfTEP transcripts generated by alternative splicing played an important role as pattern recognition receptors in the innate immune defense of scallops. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Since the discovery of multiple bioactivities for agarobiose oligomers, a quantitative method has been in great need to monitor the agarobiose oligomers. This report demonstrates that agarobiose oligomers can be separated with high resolution in HPLC after introducing a-naphthylamine into compounds. Agarobiose oligomers ranged from biose to decaose were isolated by Sephadex column. HPLC analysis indicated that each oliomer could be quantified with good linearity and a low detection limit of 0.1-4 mug/ml. The chromatographic profiles of agaro-oligosaccharides with different hydrolysis modes (hydrochloride, citric acid, solid acid, and hydroxyl radical degradation) showed that agarobiose could be obtained more than 57.8% using solid acid mediated hydrolysis, while hydrochloride acid could degrade agar into a series of agaro-oligosaccharides from biose to decaose. The yield of oligosaccharides was low if hydrolyzed by citric acid. The Fenton degradation can increase the speed of hydrolysis, but the product was complex. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A total of 10446 expressed sequence tags (ESTs) are obtained by a large-scale sequencing of a cDNA library from cephalothorax of adult Fenneropenaeus chinensis. An EST analysis platform was built up based on local computers and bioinformatic techniques were used to annotate these ESTs in order to promptly find possible functional genes, especially for immune related factors. About 4% of the ESTs show similarity to the coding sequences of such factors, including lectin, serine protease, serpin, lysozyme, etc. These ESTs provide a partial profile of the immune system in F. chinensis and useful information for further study on these genes.
Resumo:
It is well known that invertebrates are devoid of adaptive immune components and rely primarily on innate immunity to defend against pathogens, but recent studies have demonstrated the existence of enhanced secondary immune protection in some invertebrates. in the present study, the cumulative mortality of scallops received two successive Listonella anguillarum stimulations was recorded, and variations of immune parameters including phagocytosis (phagocytic rate and phagocytic index), phenoloxidase-like enzyme, acid phosphatase and superoxide dismutase activities were also examined. The scallops received a previous short-term L anguillarum stimulation were protected against a long-term stimulation of L. anguillarum. Significantly higher level of phagocytic activities and acid phosphatase activity were observed in the scallops received twice stimulations compared with those only received the secondary stimulation. These results indicated that a short-term immersion with L. anguillarum modulated the scallops' immune system and endowed the scallops with enhanced resistance to the secondary bacterial stimulation: phagocytosis and acid phosphatase were suspected to be involved in the protection. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
An electrochemical technique for the real-time detection of hydrogen peroxide (H2O2) was employed to describe respiratory burst activity (RBA) of phagocytes in plasma which can be used to evaluate the ability of immune system and disease resistance. The method is based upon the electric current changes, by redox reaction on platinum electrode of extracellular hydrogen peroxide (H2O2) released from phagocytes stimulated by the zymosan at 680 mV direct current (d.c.). Compared with the control, activation of respiratory burst by zymosan particles results in a high amperometric response, and a current peak was obtained during the whole monitoring process. The peak current was proved by addition Of Cu2+ and other controls, to be the result of intense release of H2O2 from phagocytes. The peak area was calculated and used to evaluate the quantity of effective H2O2, which represents the quantity of H2O2 beyond the clearance of related enzymes in plasma. According to Faraday's law, the phagocytes' ability of prawns to generate effective H2O2 was evaluated from 1.253 x 10(-14) mol/cell to 6.146 x 10(-14) mol/cell, and carp from 1.689 x 10(-15) Mol/Cell to 7.873 x 10(-1)5 mol/cell. This method is an acute and quick detection of extracellular effective H2O2 in plasma and reflects the capacity of phagocytes under natural conditions, which could be applied for selecting species and parents with high immunity for breeding in aquaculture. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Large-insert bacterial artificial chromosome (BAC) libraries are necessary for advanced genetics and genomics research. To facilitate gene cloning and characterization, genome analysis, and physical mapping of scallop, two BAC libraries were constructed from nuclear DNA of Zhikong scallop, Chlamys farreri Jones et Preston. The libraries were constructed in the BamHI and MboI sites of the vector pECBAC1, respectively. The BamHI library consists of 73,728 clones, and approximately 99% of the clones contain scallop nuclear DNA inserts with an average size of 110 kb, covering 8.0x haploid genome equivalents. Similarly, the MboI library consists of 7680 clones, with an average insert of 145 kb and no insert-empty clones, thus providing a genome coverage of 1.1x. The combined libraries collectively contain a total of 81,408 BAC clones arrayed in 212 384-well microtiter plates, representing 9.1x haploid genome equivalents and having a probability of greater than 99% of discovering at least one positive clone with a single-copy sequence. High-density clone filters prepared from a subset of the two libraries were screened with nine pairs of Overgos designed from the cDNA or DNA sequences of six genes involved in the innate immune system of mollusks. Positive clones were identified for every gene, with an average of 5.3 BAC clones per gene probe. These results suggest that the two scallop BAC libraries provide useful tools for gene cloning, genome physical mapping, and large-scale sequencing in the species.
Resumo:
C-type lectins are Ca2+-dependent carbohydrate-recognition proteins that play crucial roles in innate immunity. The cDNA of C-type lectin (AiCTL1) in the bay scallop Argopecten irradians was cloned by expressed sequence tag (EST) and RACE techniques. The full-length cDNA of AiCTL1 was 660 bp, consisting of a T-terminal. untranslated region (UTR) of 30 bp and a 3' UTR of 132 bp with a polyadenylation signal sequence AATAAA and a poly(A) tail. The AiCTL1 cDNA encoded a polypeptide of 166 amino acids with a putative signal peptide of 20 amino acid residues and a mature protein of 146 amino acids. The deduced amino acid sequence of AiCTL1 was highly similar to those of the C-type lectins from other animals and contained a typical carbohydrate-recognition domain (CRD) of 121 residues, which has four conserved disulfide-bonded cysteine residues that define the CRD and two additional cysteine residues at the amino terminus. AiCTL1 mRNA was dominantly expressed in the hemocytes of the bay scallop. The temporal expression of AiCTL1 mRNA in hemocytes was increased by 5.7-and 4.9-fold at 6 h after injury and 8 h after injection of bacteria, respectively. The structural features, high similarity and expression pattern of AiCTL1 indicate that the gene may be involved in injury heating and the immune response in A. irradians. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Dicer is a member of the RNAase III family which catalyzes the cleavage of double-stranded RNA to small interfering RNAs and micro RNAs, and then directs sequence-specific gene silencing. In this paper, the full-length cDNA of Dicer-1 was cloned from white shrimp Litopenaeus vannamei (designated as LvDcr1). It was of 7636 bp, including a poly A tail, a 5' UTR of 136 bp, a 3' UTR of 78 bp, and an open reading frame (ORF) of 7422 bp encoding a putative protein of 2473 amino acids. The predicted amino acid sequence comprised all recognized functional domains found in other Dicer-1 homologues and showed the highest (97.7%) similarity to the Dicer-1 from tiger shrimp Penaeus mondon. Quantitative real-time PCR was employed to investigate the tissue distribution of LvDcr1 mRNA, and its expression in shrimps under virus challenge and larvae at different developmental stages. The LvDcr1 mRNA could be detected in all examined tissues with the highest expression level in hemocyte, and was up-regulated in hemocytes and gills after virus injection. These results indicated that LvDcr1 was involved in antiviral defense in adult shrimp. During the developmental stages from fertilized egg to postlarva VII, LvDcr1 was constitutively expressed at all examined development stages, but the expression level varied significantly. The highest expression level was observed in fertilized eggs and followed a decrease from fertilized egg to nauplius I stage. Then, the higher levels of expression were detected at nauplius V and postlarva stages. LvDcr1 expression regularly increased at the upper phase of nauplius, zoea and mysis stages than their prophase. The different expression of LvDcr1 in the larval stages could provide clues for understanding the early innate immunity in the process of shrimp larval development. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Lipopolysaccharide and beta-1, 3-glucan binding protein (LGBP) is a kind of pattern recognition receptor, which can recognize and bind LPS and beta-1, 3-glucan, and plays curial roles in the innate immune defense against Gram-negative bacteria and fungi. In this study, the functions of LGBP from Zhikong scallop Chlamys farreri performed in innate immunity were analyzed. Firstly, the mRNA expression of CfLGBP in hemocytes toward three typical PAMPS stimulation was examined by realtime PCR. It was up-regulated extremely (P < 0.01) post stimulation of LPS and beta-glucan, and also exhibited a moderate up-regulation (P < 0.01) after PGN injection. Further PAMPs binding assay with the polyclonal antibody specific for CfLGBP proved that the recombinant CfLGBP (designated as rCfLGBP) could bind not only LPS and beta-glucan, but also PGN in vitro. More importantly, rCfLGBP exhibited obvious agglutination activity towards Gram-negative bacteria Escherichia coil, Gram-positive bacteria Bacillus subtilis and fungi Pichia pastoris. Taking the results of immunofluorescence assay into account, which displayed CfLGBP was expressed specifically in the immune cells (hemocytes) and vulnerable organ (gill and mantle), we believed that LGBP in C farreri, serving as a multi-functional PRR, not only involved in the immune response against Gram-negative and fungi as LGBP in other invertebrates, but also played significant role in the event of anti-Gram-positive bacteria infection. As the first functional research of LGBP in mollusks, our study provided new implication into the innate immune defense mechanisms of C. farreri and mollusks. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
CpG-containing oligodeoxynucleotides (ODNs) are known to be immunostimulatory in vertebrate systems and can activate both innate and adaptive immune responses. In this report, we described the selection, identification, and analysis of CpG motifs with immunoprotective effects in Japanese flounder. Sixteen CpG ODNs were synthesized and examined for the ability to inhibit bacterial dissemination in Japanese flounder blood. Four ODNs with the strongest inhibitory effects were selected and mixed to form ODNs 4M. In addition, a plasmid, pCN6, was constructed that contains the sequences of the four selected ODNs. When administered into Japanese flounder via intraperitoneal injection, both ODNs 4M and pCN6 could, in dose and time dependent manners, afford short-term protection against the infections of two different bacterial pathogens. Immunological analyses showed that ODNs 4M and, especially, pCN6 activated head kidney macrophages and enhanced serum bactericidal activity via probably the alternative pathway of complement activation. When used as a DNA vaccine to immunize Japanese flounder, pCN6 conferred apparent protections (42.9% and 52.6%, respectively, in terms of relative percent survival) against the challenges of two different fish pathogens at 4-week post-vaccination. Transcriptional analysis showed that vaccination with pCN6 upregulated the expression of the genes encoding NKEF, MHC II alpha, IL-1 beta, Mx, and MHC I alpha. These results demonstrate that ODNs 4M and pCN6 are immunostimulatory in Japanese flounder and can induce short- and long-term nonspecific protections against bacterial infections. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
ISG15 is an interferon-stimulated gene that encodes a ubiquitin-like protein. ISG15 homologues have been identified in a number of fish species, some of which are known to be regulated at expression level by virus infection and lipopolysacchande (LPS) treatment However, the relationship between ISG15 and live bacterial infection has not been investigated in piscine models. In this study, an ISG15 homologue, SoISG15, was identified from red drum Scraeriops ocellaws and analyzed at expression and functional levels The open reading frame ofSolSG15 is 477 base pairs (bp) and mtronless, with a 5'-untranslated region (UTR) of 91 bp and a 3'-UTR of 415 bp The deduced amino acid sequence of S0ISG15 shares 60-67% overall identities with the ISG15 of several fish species. S0ISG15 possesses two conserved ubiquinn-like domains and the canonical ubiquitin conjugation motif, LRGG, at the C-terminus. Expressional analysis showed that constitutive expression of SolSG15 was highest in blood and lowest in kidney Experimental challenges with LPS and bacterial pathogens induced significant S0ISG15 expression in the kidney but not in the liver Similar differential induction was also observed at cellular level with primary hepatocytes and head kidney (HK) lymphocytes. Poly(' C), however, effected drastic induction of S0ISG15 expression in kidney and liver at both tissue and cellular levels. Immunoblot analysis showed that S0ISG15 was secreted by cultured HK lymphocytes into the extracellular milieu. Recombinant S0ISG15 expressed in and purified from Eschenclua colt was able to enhance the respiratory burst activity, acid phosphatase activity, and bactericidal activity of HK macrophages. Taken together, the results of this study indicated that SoISG 15 possesses apparent immunological property and is likely to be involved in host immune defense against bacterial infection. (C)2010 Elsevier Ltd All rights reserved.
Resumo:
Peptidoglycan recognition protein (PGRP) is an essential molecule in innate immunity for both invertebrates and vertebrates, owing to its prominent ability in detecting and eliminating the invading bacteria. Several PGRPs have been identified from mollusk, but their functions and the underlined mechanism are still unclear. In the present study, the mRNA expression profiles, location, and possible functions of PGRP-S1 from Zhikong scallop Chlamys farreri (CfPG RP-St) were analyzed. The CfPGRP-S1 protein located in the mantle, gill, kidney and gonad of the scallops. Its mRNA expression in hemocytes was up-regulated extremely after PGN stimulation (P < 0.01), while moderately after the stimulations of LPS (P < 0.01) and beta-glucan (P < 0.05). The recombinant protein of CfPGRP-S1 (designated as rCfPGRP-S1) exhibited high affinity to PGN and moderate affinity to LPS, but it did not bind beta-glucan. Meanwhile, rCfPGRP-S1 also exhibited strong agglutination activity to Gram-positive bacteria Micrococcus luteus and Bacillus subtilis and weak activity to Gram-negative bacteria Escherichia coli. More importantly, rCfPGRP-S1 functioned as a bactericidal amidase to degrade PGN and strongly inhibit the growth of E. coli and Staphyloccocus aureus in the presence of Zn2+. These results indicated that CfPGRP-S1 could not only serve as a pattern recognition receptor recognizing bacterial PGN and LPS, but also function as a scavenger involved in eliminating response against the invaders. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The Zhikong Scallop, Chlamys farreri, is one of the most Important bivalve mollusks cultured in northern China However, mass mortality of the cultured C farreri has posed a serious threat to the maricultural Industry in recent years. Acute Viral Necrobiotic Virus (AVNV) is believed as an important etiological agent causing the scallop mass mortalities To understand the mechanism behind the AVNV associated scallop disease and mortality, we assessed the physiological and immune responses of C farreri to the virus infection using oxygen consumption rate, ammonium-nitrogen excretion rate, hemocyte copper, zinc superoxide dismutase gene expression, and plasma superoxide dismutase activity and alkaline phosphatase activity as indicators Scallops challenged by AVNV at 25 C developed typical disease signs 2 days after virus injection Before the disease manifested, scallop oxygen consumption and NH4+-N excretion rates rose and then fell back. Real-time PCR revealed that the hemocyte cytosol Cu, Zn SOD gene expression was upregulated followed by recovery The plasma SOD activity, however, augmented consistently following virus injection Moreover, plasma AKP activity first lowered and then elevated gradually to the highest level at 24 h post virus injection Scallops challenged by AVNV at 17 degrees C neither developed notable disease nor showed obvious responses that could be associated with the virus infection. While the results suggested a correlation between the elevated seawater temperature and the AVNV infection associated C farreri mortalities, they also indicated that the viral infection provoked multiple physiological and immune responses in the host scallops (C) 2010 Elsevier Ltd All rights reserved