100 resultados para hot issue markets


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perform a systematic calculation of the equation of state of asymmetric nuclear matter at finite temperature within the framework of the Brueckner-Hartree-Fock approach with a microscopic three-body force. When applying it to the study of hotka on condensed matter, we find that the thermal effect is more profound in comparison with normal matter, in particular around the threshold density. Also, the increase of temperature makes the equation of state slightly stiffer through suppression of kaon condensation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dinuclear model of the formation mechanism of a superheavy compound nucleus assumes that when all nucleons of the projectile have been transferred in to the target nucleus the compound nucleus is formed. The nucleon transfer is determined by the driving potential. For some reaction channels, the relation between nucleon transfer and the evolution path of the neutron/proton ratio is rather complicated. In principle, both the dynamical equation and the driving potential should be a twodimensional explicit function of the neutron and proton. For the sake of simplicity we calculated the driving potential by choosing the path of the nucleon transfer which is related to the nutron/proton ratio, and the calculated evaporation residue cross-sections to synthesize the superheavy nuclei are much closer to the experimental data

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dinuclear system model has been further developed by introducing the barrier distribution function method in the process of heavy-ion capture and fusion to synthesize superheavy nuclei. The capture of two colliding nuclei, formation and de-excitation process of compound nucleus are decribed by using empirical coupled channel model, solving master equation numerically and statistical evaporation model, respectively. Within the framework of the dinuclear system model, the fusion-evaporation excitation functions of the systems Ca-48(Am-243, 3n-5n) (288-286)115 and Ca-48(Cm-248, 3n-5n)(293-291)116 are calculated, which are used for synthesizing new superheavy nuclei at Dubna in recent years. Isotopic dependence of production cross sections with double magic nucleus Ca-48 bombarding actinide targets U, Np, Pu, Am, Cm to synthesize superheavy nuclei with charged numbers Z=112-116 is analyzed systematically. Based on these analysis, the optimal projectile-target combination and the optimal excitation energy are proposed. It is shown that shell correction energy and neutron separation energy will play an important role on the isotopic dependence of production cross sections of superheavy nuclei.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the framework of the finite temperature Brueckner-Hartree-Fock approach including the contribution of the microscopic three-body force, the single nuclear potential and the nucleon effective mass in hot nuclear matter at various temperatures and densities have been calculated by using the hole-line expansion for mass operator, and the effects of the three-body forces and the ground state correlations on the single nucleon potential have been investigated. It is shown that both the ground state correlations and the three-body force affect considerably the density and temperature dependence of the single nucleon potential. The rearrangement correction in the single nucleon potential is repulsive and it reduces remarkably the attraction of the single nucleon potential in the low-momentum region. The rearrangement contribution due to the ground state correlations becomes smaller as the temperature rises up and becomes larger as the density increases. The effect of the three-body force on the ground state correlations is to reduce the contribution of rearrangement. At high densities, the single nucleon potential containing both the rearrangement correction and the contribution of the three-body force becomes more repulsive as the temperature increases.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel cemented carbides (W0.7Al0.3)C-0.65-Co with different cobalt contents were prepared by solid-state reaction and hot-pressing technique. Hot-pressing technique as a novel technique was performed to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have superior mechanical properties compared with WC-Co. The density, operate cost of the novel material were lower than WC-Co system. The novel materials were easy to process nanoscale sintering and get the rounded particles in the bulk materials. There is almost no eta-phase in the (W0.7Al0.3)C-0.65-Co cemented carbides system although the carbon deficient get the astonished 35% value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel cemented carbides (W0.5Al0.5)C-0.8-Co with different cobalt contents were prepared by mechanical alloying and hot-pressing technique. Hot-pressing technique as a common technique was performed to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have superior mechanical properties compared to WC-Co. The density, operating cost of the novel material were much lower than WC-Co. There is almost no eta-phase in the (W0.5Al0.5)C-0.8-Co cemented carbides system although the carbon deficient get the value of 20%, and successfully got the nanostructured rounded (W0.5Al0.5)C-0.8 particles.