94 resultados para halo—phreatophytic meadow


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Supported by MSS images in the mid and late 1970s, TM images in the early 1990s and TM/ETM images in 2004, grassland degradation in the "Three-River Headwaters" region (TRH region) was interpreted through analysis on IRS images in two time series, then the spatial and temporal characteristics of grassland degradation in the TRH region were analyzed since the 1970s. The results showed that grassland degradation in the TRH region was a continuous change process which had large affected area and long time scale, and rapidly strengthen phenomenon did not exist in the 1990s as a whole. Grassland degradation pattern in the TRH region took shape initially in the mid and late 1970s. Since the 1970s, this degradation process has taken place continuously, obviously characterizing different rules in different regions. In humid and semi-humid meadow region, grassland firstly fragmentized, then vegetation coverage decreased continuously, and finally "black-soil-patch" degraded grassland was formed. But in semi-arid and and steppe region, the vegetation coverage decreased continuously, and finally desertification was formed. Because grassland degradation had obviously regional differences in the TRH region, it could be regionalized into 7 zones, and each zone had different characteristics in type, grade, scale and time process of grassland degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eight sporopollen zones have been divided based on the results of high-resolution sporopollen analysis of Core B10 in the southern Yellow Sea. Based on the results along with C-14 datings and the subbottom profiling data, climatic and environmental changes since the last stage of late Pleistocene are discussed. The main conclusions are drawn as follows: (1) the vegetation evolved in the process of coniferous forest-grassland containing broad-leaved treesconiferous and broad-leaved mixed forest --> coniferous and broad-leaved mixed forest-grassland prevailed by coniferous trees --> coniferous and broad-leaved mixed forest-grassland containing evergreen broad-leaved trees- coniferous and broad-leaved mixed forest-grassland prevailed by broad-leaved trees-deciduous broad-leaved forest-meadow containing evergreen broad-leaved trees- coniferous and broadleaved mixed forest-grassland prevailed by broad-leaved trees- coniferous and broad-leaved mixed forest containing evergreen broad-leaved trees; (2) eight stages of climate changes are identified as the cold and dry stage, the temperate and wet stage, the cold and dry stage, the warm and dry stage, the temperate and wet stage, the hot and dry stage, the temperate and dry stage, then the warm and dry stage in turn; (3) the sedimentary environment developed from land, to littoral zone, to land again, then to shore-neritic zone; and (4) the Yellow Sea Warm Current formed during early-Holocene rather than Atlantic stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To understand the carbon dynamics and correlation between net ecosystem CO2 exchange and environmental conditions of alpine meadow ecosystem in the Qinghai-Tibetan Plateau, we analyzed two years (from 2002 to 2003) data measured by eddy covariance method. The results showed that in those two years the ecosystem behaved as the carbon sink and absorbed carbon dioxide 286.74 g/(m2•a) and 284.94 g/(m2•a),respectively. It suggested that there were not distinct correlations between the daily CO2 flux (net ecosystem exchange, NEE) and photosynthetic photon flux density (PPFD) and soil water content (SWC) while daily NEE was evidently corresponded to air temperature. The "turning point air temperature", was meant at that air temperature, when the increase rate of ecosystem photosynthesis (gross primary production, GPP) began to be above the increase rate of ecosystem respiration (Reco), and was 2.47 ℃ by an exponential-linear model established in the alpine meadow. Then, if the precipitation and PPFD doesnt change greatly, moreover, the alpine meadow keeps balance (not lots of variations among years, especially in plant species, plant growth), the capacity of alpine meadow ecosystem carbon sink will be enhanced when the increase of air temperature at above 2.47 ℃, and decreased when that of air temperature at below 2.47 ℃.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Precipitation is considered to be the primary resource limiting terrestrial biological activity in water-limited regions. Its overriding effect on the production of grassland is complex. In this paper, field data of 48 sites (including temperate meadow steppe,temperate steppe, temperate desert steppe and alpine meadow) were gathered from 31 published papers and monographs to analyze the relationship between above-ground net primary productivity (ANPP) and precipitation by the method of regression analysis. The results indicated that there was a great difference between spatial pattern and temporal pattern by which precipitation influenced grassland ANPP. Mean annual precipitation (MAP) was the main factor determining spatial distribution of grassland ANPP (r~2 = 0.61,P < 0.01); while temporally, no significant relationship was found between the variance of AN PP and inter-annual precipitation for the four types of grassland. However, after dividing annual precipitation into monthly value and taking time lag effect into account, the study found significant relationships between ANPP and precipitation. For the temperate meadow steppe, the key variable determining inter-annual change of ANPP was last August-May precipitation (r~2= 0.47, P = 0.01); for the temperate steppe, the key variable was July precipitation (r~2 = 0.36, P = 0.02); for the temperate desert steppe, the key variable was April-June precipitation (r~2 = 0.51, P <0.01); for the alpine meadow, the key variable was last September-May precipitation (r~2 = 0.29, P < 0.05). In comparison with analogous research, the study demonstrated that the key factor determining inter-annual changes of grassland ANPP was the cumulative precipitation in certain periods of that year or the previous year.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Potentilla fruticosa scrub, Kobresia humilis meadow and Kobresia tibetica meadow are widely distributed on the Qinghai-Tibet Plateau. During the grass exuberance period from 3 July to 4September, based on close chamber-GC method, a study on CO2 emissions from different treatments was conducted in these meadows at Haibei research station, CAS. Results indicated that mean CO2emission rates from various treatments were 672.09+152.37 mgm-2h-1 for FC (grass treatment); 425.41+191.99 mgrn-2h-1 for FJ (grass exclusion treatment); 280.36+174.83 mgrn-2h-1 for FL (grass and roots exclusion treatment); 838.95+237.02 mgm-2h-1 for GG (scrub+grass treatment); 528.48+205.67 mgm-2h-1for GC (grass treatment); 268.97 ±99.72 mgm-2h-1 for GL (grass and roots exclusion treatment); and 659.20±94.83 mgm-2h-1 for LC (grass treatment), respectively (FC, FJ, FL, GG, GC, GL, LC were the Chinese abbreviation for various treatments). Furthermore, Kobresia humilis meadow, Potentilla fruticosa scrub meadow and Kobresia tibetica meadow differed greatly in average CO2 emission rate of soil-plant system, in the order of GG>FC>LC>GC. Moreover, in Kobresia humilis meadow,heterotrophic and autotrophic respiration accounted for 42% and 58% of the total respiration of soil-plant system respectively, whereas, in Potentilla fruticosa scrub meadow, heterotrophic and autotrophic respiration accounted for 32% and 68% of total system respiration from G-G; 49% and 51%from GC. In addition, root respiration from Kobresia humilis meadow approximated 145 mgCO2m-2h-1,contributed 34% to soil respiration. During the experiment period, Kobresia humilis meadow and Potentilla fruticosa scrub meadow had a net carbon fixation of 111.11 grn-2 and 243.89 grn-2,respectively. Results also showed that soil temperature was the main factor which influenced CO2 emission from alpine meadow ecosystem, significant correlations were found between soil temperature at 5 cm depth and CO2 emission from GG, GC, FC and FJ treatments. In addition, soil moisture may be the inhibitory factor of CO2 emission from Kobresia tibetica meadow, and more detailed analyses should be done in further research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We measured the stable carbon isotope ratios for muscle of the upland buzzards (Buteo hemilasius), plateau pika (Ochotoma curzoniae), root vole (Microtus oeconomus), plateau zokor (Myospalax fontanierii) and passerine bird species at the Haibei Alpine Meadow Ecosystem Research Station (HAMERS), and provided diet information of upland buzzards with the measurement of stable carbon isotopes in tissues of these consumers. The results showed that δ~(13)C values of small mammals and passerine bird species ranged from -25.57‰ to -25.78‰ (n = 12), and from -24.81‰ to -22.51% (n = 43), respectively, δ~(13)C values of the upland buzzards ranged from -22.60‰ to -23.10‰ when food was not available. The difference in δ~(13)C values (2.88‰±0.31‰) between upland buzzards and small mammals was much larger than the differences reported previously, 1‰-2‰, and showed significant difference, while 1.31‰±0.34‰ between upland buzzard and passerine bird species did not differ from the previously reported trophic fractionation difference of 1‰-2‰. Estimation of trophic position indicated that upland buzzards stand at trophic position 4.23, far from that of small mammals, i.e., upland buzzards scarcely captured small mammals as food at the duration of food shortage. According to isotope mass balance model, small mammals contributed 7.89% to 35.04% of carbon to the food source of the upland buzzards, while passerine bird species contributed 64.96% to 92.11%. Upland buzzards turned to passerine bird species as food during times of shortage of small mammals. δ~(13)C value, a useful indicator of diet, indicates that the upland buzzards feed mainly on passerine bird species rather than small mammals due to "you are what you eat" when small mammal preys are becoming scarce.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studied the reproductive strategies of Kobresia humilis in alpine meadow about its sexual reproduction ,vegetative reproduction and reproductive efforts respectively. The results show that the seed output of Kobresia humilis is 715. 5per unit (m2) . The germination is above 60 % in fit condition ,while only about 3 % in field. There is only 16. 13 % seed which get into seed bank and remain vitality till grass greening. So the seedling is only 3. 46 per unit (m2) in field.But the new ramets of Kobresia humilis are 711. 34 unit (m2 ) from vegetative reproduction. In addition ,vegetative reproductive effort is more than sexual reproductive effort . It constitutes 93. 5 % of all reproductive efforts. Therefore ,the main reproductive strategy of Kobresia humilis is vegetative reproduction ,and sexual reproduction is secondary in alpine condition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burrowing behaviors of the plateau zokors ( Myospalax bailely) in relation to soil hardness were investigated by using radio2telemetry at Haibei Alpine Meadow Ecosystem Research Station ,Qinghai , China. The results showed that there were no differences of burrowing behaviors and the efficiencies of the excavating segment between male and female , except the digging duration of the male was longer than that of the female in the same soil. With increase of soil hardness , digging duration in incisors significantly increased , but dried soil mass dug out by the zokors in each bout reduced. Mean-while the field investigation also showed that soil hardness affected the distribution of the zokor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The seed bank of Kobresia humilis meadow in Qing- Zang Plateau was preliminaryly studied and the relationships among seed bank , seed rain and above-ground vegetation were compared and analysed.The results showed that there were 23 species in the seed bank in both of green up and withering stage. In species composition of the seed bank ,Ranunculaceae and Leguminosae were dominant ,while the percentage of Cyperaceae and Gramineae were lower. The percentage of K. humilis seeds was relatively lower with 0. 97 % in green up stage and 1. 97 % in withering stage. The species composition of the seed bank correlated with that of the seed rain ( r = 0. 7505 , P < 0. 01) ,and there were 18 common species which was 78. 3 %of species of the seed bank. Only 41. 81 %of above-ground vegetation species presented in the seed bank. The seed numbers of the dominant plant species in vegetation were smaller , with lower percentage in the seed bank. Therefore , the dominant vegetation of K. humilis et al. mainly depended on vegetative reproduction to maintain and strengthen. From vegetation to the seed bank in green up stage ,the species diversity decreased by 9. 94 %. It implied that the seed bank was the source of vegetation regeneration , but also a mechanism of preserving species diversity of the plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the first time to our knowledge, we report here methane emissions by plant communities in alpine ecosystems in the Qinghai-Tibet Plateau. This has been achieved through long-term field observations from June 2003 to July 2006 using a closed chamber technique. Strong methane emission at the rate of 26.2 +/- 1.2 and 7.8 +/- 1.1 mu g CH4 m(-2) h(-1) was observed for a grass community in a Kobresia humilis meadow and a Potentilla fruticosa meadow, respectively. A shrub community in the Potentilla meadow consumed atmospheric methane at the rate of 5.8 +/- 1.3 mu g CH4 m(-2) h(-1) on a regional basis; plants from alpine meadows contribute at least 0.13 Tg CH4 yr(-1) in the Tibetan Plateau. This finding has important implications with regard to the regional methane budget and species-level difference should be considered when assessing methane emissions by plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrous oxide (N2O) emission was measured in a Kobresia humilis meadow and a Potentilla fruticosa meadow in the Qinghai-Tibet Plateau from June 2003 to July 2006. Five treatments were setup in the two alpine meadows. Two bare soil treatments were setup in the K. humilis meadow (BSK) and in the P. fruticosa meadow (BSP) by removing the above- and belowground plant biomass. Three plant community treatments were setup with one in the K. humilis meadow (herbaceous community in the K. humilis meadow-HCK) and two in the P. fruticosa meadow (herbaceous community in the P. fruticosa meadow-HCP, and shrub community in the P. fruticosa meadow-SCP). Nitrous oxide emission from BSP was estimated to be 38.1 +/- 3.6 mu g m(-2) h(-1), significantly higher than from BSK (30.2 +/- 2.8 mu g m(-2) h(-1)) during the whole experiment period. Rates from the two herbaceous blocks (HCK and HCP) were close to 39.5 mu g m(-2) stop h(-1) during the whole experimental period whereas shrub community (SCP) showed significant high emission rates of N2O. Annual rate of N2O emission was estimated to be 356.7 +/- 8.3 and 295.0 +/- 11.6 mg m(-2) year(-1) from the alpine P. fruticosa meadow and from the alpine K. humilis meadow, respectively. These results suggest that alpine meadows in the Qinghai-Tibetan Plateau are an important source of N2O, contributing an average of 0.3 Tg N2O year(-1). We concluded that N2O emission will decrease, due to a predicted vegetation shift from shrubs to grasses imposed by overgrazing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Through 2-3-year (2003-2005) continuous eddy covariance measurements of carbon dioxide and water vapor fluxes, we examined the seasonal, inter-annual, and inter-ecosystem variations in the ecosystem-level water use efficiency (WUE, defined as the ratio of gross primary production, GPP, to evapotranspiration, ET) at four Chinese grassland ecosystems in the Qinghai-Tibet Plateau and North China. Representing the most prevalent grassland types in China, the four ecosystems are an alpine swamp meadow ecosystem, an alpine shrub-meadow ecosystem, an alpine meadow-steppe ecosystem, and a temperate steppe ecosystem, which illustrate a water availability gradient and thus provide us an opportunity to quantify environmental and biological controls on ecosystem WUE at different spatiotemporal scales. Seasonally, WUE tracked closely with GPP at the four ecosystems, being low at the beginning and the end of the growing seasons and high during the active periods of plant growth. Such consistent correspondence between WUE and GPP suggested that photosynthetic processes were the dominant regulator of the seasonal variations in WUE. Further investigation indicated that the regulations were mainly due to the effect of leaf area index (LAI) on carbon assimilation and on the ratio of transpiration to ET (T/ET). Besides, except for the swamp meadow, LAI also controlled the year-to-year and site-to-site variations in WUE in the same way, resulting in the years or sites with high productivity being accompanied by high WUE. The general good correlation between LAI and ecosystem WUE indicates that it may be possible to predict grassland ecosystem WUE simply with LAI. Our results also imply that climate change-induced shifts in vegetation structure, and consequently LAI may have a significant impact on the relationship between ecosystem carbon and water cycles in grasslands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From 30 June to 24 September in 2003 ecosystem respiration (Re) in two alpine meadows on the Tibetan Plateau were measured using static chamber- and gas chromatography- (GC) based techniques. Simultaneously, plant removal treatments were set to partition Re into plant autotrophic respiration (Ra) and microbial heterotrophic respiration (Rh). Results indicated that Re had clear diurnal and seasonal variation patterns in both of the meadows. The seasonal variability of Re at both meadow sites was caused mainly by changes in Ra, rather than Rh. Moreover, at the Kobresia humilis meadow site (K_site), Ra and Rh accounted for 54% and 46% of Re, respectively. While at the Potentilla fruticosa scrub meadow (P_site), the counterparts accounted for 61% and 39%, respectively. T test showed that there was significant difference in Re rates between the two meadows (t = 2.387, P = 0.022). However, no significant difference was found in Rh rates, whereas a significant difference was observed in Ra rates between the two meadows. Thus, the difference in Re rate between the two meadows was mainly attributed to plant autotrophic respirations. During the growing season, the two meadows showed relatively low Q(10) values, suggesting that Re, especially Rh was not sensitive to temperature variation in the growing season. Additionally, Re and Rh at the K_site, as well as Rh at the P_site was negatively correlated with soil moisture, indicating that soil moisture would also play an important role in respirations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We monitored UVA, UVB, and solar radiation from August 2001 to 2003 on the northern Qinghai-Tibetan Plateau to characterize the diurnal and seasonal variations of UV radiation on the world's highest plateau. Daily UVB radiation and the ratio of UVB to total solar radiation increased significantly when the atmospheric ozone concentration decreased as estimated by the total ozone mapping spectrometer (TOMS), as well as when cloud coverage decreased. The UVB/UVA ratio also showed a significant increase when the TOMS ozone concentration decreased in the morning. The seasonal variation pattern of UVB, however, was closely correlated with solar elevation but was little affected by the seasonal pattern of the atmospheric ozone amount. Compared to observations from the central plateau, the magnitude of the UVB increase attributed to ozone depletion was smaller at the northern edge. The study suggests that the temporal variation of ground UV radiation is determined by both solar elevation and the ozone amount, but the spatial difference on the plateau is likely to be ascribed mainly to the spatial variation of the ozone amount. (c) 2007 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study attempts to model alpine tundra vegetation dynamics in a tundra region in the Qinghai Province of China in response to global warming. We used Raster-based cellular automata and a Geographic Information System to study the spatial and temporal vegetation dynamics. The cellular automata model is implemented with IDRISI's Multi-Criteria Evaluation functionality to simulate the spatial patterns of vegetation change assuming certain scenarios of global mean temperature increase over time. The Vegetation Dynamic Simulation Model calculates a probability surface for each vegetation type, and then combines all vegetation types into a composite map, determined by the maximum likelihood that each vegetation type should distribute to each raster unit. With scenarios of global temperature increase of I to 3 degrees C, the vegetation types such as Dry Kobresia Meadow and Dry Potentilla Shrub that are adapted to warm and dry conditions tend to become more dominant in the study area.