67 resultados para graph anonymization
Resumo:
该文以一实际应用为背景提出了多移动机器人避碰及死锁预防算法 ,该算法将机器人的运行环境形式化地描述为初等运动集、冲突图、总任务集及机器人作业集 ,利用集合论、图论的有关方法及技术实现了多机器人间的避碰与死锁预防 .当机器人的运行环境改变时 ,只需要对相应的集合描述文件进行修改 ,而不用对程序做任何改动 .算法的另一个特点是利用避碰算法巧妙地完成了死锁预防 .仿真和实际运行证明了该算法高效可靠 .
Resumo:
Kusiak和Finke讨论了工艺计划选择问题,并对此建立了图论和整数规划模型。本文给出一个修改的模型,模型求解归结为求非循环有向图的最短路径,使问题求解大为简化。
Resumo:
本文用 Petri 网的一个子类——时间事件图对流水车间型和作业车间型的柔性制造系统(FMS)建模并进行理论分析,给出了可行排序的判定条件及系统中托盘数量配置与系统生产率的关系,对系统的主要性能指标,如生产周期、工件驻留时间、在制品库存等给出了定量描述.这些结果为系统的设计和运行提供了理论依据.
Resumo:
本文简要地介绍了数控自动编程专家系统.其中包括:专家系统知识表示的形式;分层次的黑板结构;前向推理求解策略和相应的解释功能;系统针对不同类型的曲线组合,采用不同的独立的知识源(KS)进行处理.由于在知识的处理上采用编码技术,在前向推理求解策略中使用启发信息和“剪技”技术,提高了系统的时空效率.系统中的规划程序能自动规划切削路径.输出供数控车床使用的 NC 代码,并可在显示屏上进行图形显示和切削仿真.目前原型系统已经在 IBM-PC 和 Sun3/60计算机上利用FORTRAN 语言实现.
Resumo:
基于PC和多轴运动控制器的开放式数控系统是理想的开放式数控系统。介绍了基于PMAC的开放式数控系统结构形式,PMAC的差补、位置控制、伺服功能、以PMAC和PC机为硬件平台搭建了数控系统,并对其硬件构成和软件设计结构进行了分析。着重从软件设计的角度,介绍了PTALK控件的功能和作用,对数控系统软件构成进行了详细的阐述。并设计出了友好的用户界面,在实际应用中具有重要意义。
Resumo:
The Second Round of Oil & Gas Exploration needs more precision imaging method, velocity vs. depth model and geometry description on Complicated Geological Mass. Prestack time migration on inhomogeneous media was the technical basic of velocity analysis, prestack time migration on Rugged surface, angle gather and multi-domain noise suppression. In order to realize this technique, several critical technical problems need to be solved, such as parallel computation, velocity algorithm on ununiform grid and visualization. The key problem is organic combination theories of migration and computational geometry. Based on technical problems of 3-D prestack time migration existing in inhomogeneous media and requirements from nonuniform grid, parallel process and visualization, the thesis was studied systematically on three aspects: Infrastructure of velocity varies laterally Green function traveltime computation on ununiform grid, parallel computational of kirchhoff integral migration and 3D visualization, by combining integral migration theory and Computational Geometry. The results will provide powerful technical support to the implement of prestack time migration and convenient compute infrastructure of wave number domain simulation in inhomogeneous media. The main results were obtained as follows: 1. Symbol of one way wave Lie algebra integral, phase and green function traveltime expressions were analyzed, and simple 2-D expression of Lie algebra integral symbol phase and green function traveltime in time domain were given in inhomogeneous media by using pseudo-differential operators’ exponential map and Lie group algorithm preserving geometry structure. Infrastructure calculation of five parts, including derivative, commutating operator, Lie algebra root tree, exponential map root tree and traveltime coefficients , was brought forward when calculating asymmetry traveltime equation containing lateral differential in 3-D by this method. 2. By studying the infrastructure calculation of asymmetry traveltime in 3-D based on lateral velocity differential and combining computational geometry, a method to build velocity library and interpolate on velocity library using triangulate was obtained, which fit traveltime calculate requirements of parallel time migration and velocity estimate. 3. Combining velocity library triangulate and computational geometry, a structure which was convenient to calculate differential in horizontal, commutating operator and integral in vertical was built. Furthermore, recursive algorithm, for calculating architecture on lie algebra integral and exponential map root tree (Magnus in Math), was build and asymmetry traveltime based on lateral differential algorithm was also realized. 4. Based on graph theory and computational geometry, a minimum cycle method to decompose area into polygon blocks, which can be used as topological representation of migration result was proposed, which provided a practical method to block representation and research to migration interpretation results. 5. Based on MPI library, a process of bringing parallel migration algorithm at arbitrary sequence traces into practical was realized by using asymmetry traveltime based on lateral differential calculation and Kirchhoff integral method. 6. Visualization of geological data and seismic data were studied by the tools of OpenGL and Open Inventor, based on computational geometry theory, and a 3D visualize system on seismic imaging data was designed.
Resumo:
Population research is a front area concerned by domestic and overseas, especially its researches on its spatial visualization and its geo-visualization system design, which provides a sound base for understanding and analysis of the regional difference in population distribution and its spatial rules. With the development of GIS, the theory of geo-visualization more and more plays an important role in many research fields, especially in population information visualization, and has been made the big achievements recently. Nevertheless, the current research is less attention paid to the system design for statistical-geo visualization for population information. This paper tries to explore the design theories and methodologies for statistical-geo-visualization system for population information. The researches are mainly focused on the framework, the methodologies and techniques for the system design and construction. The purpose of the research is developed a platform for population atlas by the integration of the former owned copy software of the research group in statistical mapping system. As a modern tool, the system will provide a spatial visual environment for user to analyze the characteristics of population distribution and differentiate the interrelations of the population components. Firstly, the paper discusses the essentiality of geo-visualization for population information and brings forward the key issue in statistical-geo visualization system design based on the analysis of inland and international trends. Secondly, the geo-visualization system for population design, including its structure, functionality, module, user interface design, is studied based on the concepts of theory and technology of geo-visualization. The system design is proposed and further divided into three parts: support layer, technical layer, user layer. The support layer is a basic operation module and main part of the system. The technical layer is a core part of the system, supported by database and function modules. The database module mainly include the integrated population database (comprises spatial data, attribute data and geographical features information), the cartographic symbol library, the color library, the statistical analysis model. The function module of the system consists of thematic map maker component, statistical graph maker component, database management component and statistical analysis component. The user layer is an integrated platform, which provides the functions to design and implement a visual interface for user to query, analysis and management the statistic data and the electronic map. Based on the above, China's E-atlas for population was designed and developed by the integration of the national fifth census data with 1:400 million scaled spatial data. The atlas illustrates the actual development level of the population nowadays in China by about 200 thematic maps relating with 10 map categories(environment, population distribution, sex and age, immigration, nation, family and marriage, birth, education, employment, house). As a scientific reference tool, China's E-atlas for population has already received the high evaluation after published in early 2005. Finally, the paper makes the deep analysis of the sex ratio in China, to show how to use the functions of the system to analyze the specific population problem and how to make the data mining. The analysis results showed that: 1. The sex ratio has been increased in many regions after fourth census in 1990 except the cities in the east region, and the high sex ratio is highly located in hilly and low mountain areas where with the high illiteracy rate and the high poor rate; 2. The statistical-geo visualization system is a powerful tool to handle population information, which can be used to reflect the regional differences and the regional variations of population in China and indicate the interrelations of the population with other environment factors. Although the author tries to bring up a integrate design frame of the statistical-geo visualization system, there are still many problems needed to be resolved with the development of geo-visualization studies.