104 resultados para gold and silver nanoparticles
Resumo:
Noble metal composite nanoparticles, as attractive building blocks of advanced functional materials, have received enormous attentions due to their specific optical, electronic and catalytic properties that are distant from those of the corresponding monometal nanoparticles. Such materials have important applications in such areas as sensors, optical materials, catalysis and biology, and developed into an increasingly important research area in nanomaterials science. This article reviews the recent progress in the synthesis, properties, and applications of noble metal composite nanoparticles with core-shell, heterostructure, and alloy structure.
Resumo:
Electrodeposition of silver nanostructures on a polyamidoamine (PAMAM) dendrimers-modified surface has been reported. The assembled PAMAM monolayer film was used as a substrate for electrodeposition. We found that the PAMAM dendrimers obviously affected nucleation growth and silver nanostructures (spherical, dendritic and "fish bone" shapes) were obtained, which were different from those deposited on unmodified surfaces. It was attributed to the unique structures and properties of PAMAM dendrimers compared with linear polymers.
Self-assembly of lambda-DNA networks/Ag nanoparticles: Hybrid architecture and active-SERS substrate
Resumo:
In this article, highly rough and stable surface enhanced Raman scattering (SERS)-active substrates had been fabricated by a facile layer by-layer technique. Unique lambda-DNA networks and CTAB capped silver nanoparticles (AgNP) were alternatively self-assembled on the charged mica surface until a desirable number of bilayers were reached. The as-prepared hybrid architectures were characterized by UV-vis spectroscopy, tapping mode atomic force microscopy (AFM) and confocal Raman microscopy, respectively.
Resumo:
A controllable silver nanoparticle aggregate system has been synthesized by adding different amounts of ethanol to cetyltrimethylammonium bromide (CTAB) capped silver nanoparticles (Ag-nps), which could be used as highly efficient surface-enhanced Raman scattering (SERS) active substrates. This ethanol-induced aggregation can be attributed to preferential dissolution of CTAB into ethanol, which leads a partial removal of the protective CTAB layer on Ag-nps. The optical and morphological properties of these aggregates under various volumes of ethanol were explored via UV-vis spectroscopy and atomic force microscopy.
Resumo:
We report a general method for incorporation of nanoparticles into polyelectrolyte multilayer (PEM) thin films by utilizing the excess charges and associated counterions present in the PEMs. Silver ions were introduced directly into multilayers assembled from poly(diallyldimethylammonium chloride) (PDDA) and poly(styrene sulfonate) (PSS), (PDDA/PSS)(n), by a rapid ion exchange process, which were then converted into silver nanoparticles via in situ reduction to create composite thin films. The size and the content of the nanoparticles in the film call be tuned by adjusting the ionic strength in the polyelectrolyte solutions used for the assembly. Spatial control over the distribution of the nanoparticles in the PEM was achieved via the use of multilayer heterostructure containing PDDA/PSS bilayer blocks assembled at different salt concentrations. Because excess charges and counterions are always present in any PEM, this approach can be applied to fabricate a wide variety of composite thin Films based on electrostatic self-assembly.
Resumo:
Silver nanoplates with controlled size are synthesized by seed-mediated growth approach in the presence of citrate. These nanoplates are single crystal with a mean size of 25-1073 nm and thickness of ca. 10-22 nm. The optical in-plane dipole plasmon resonance bands of these plates can be tuned from 458 to 2400 nm. Control experiments have been explored for a more thorough understanding of the growth mechanism. It was found that the additional citrate ions in the growth solution were the key to controlling the aspect ratio of silver nanoplates. Similar to the surfactants or polymers in the solution, citrate ions could be likewise dynamically adsorbed on the growing silver nanoparticles and promote the two-dimensional growth of silver nanoparticles under certain conditions. Small silver seeds were also found to play an important role in the formation of large thin silver nanoplates, although the structure of them was not clear yet and needed further investigations.
Resumo:
In this article, a novel technique for the fabrication of surface enhanced Raman scattering (SERS) active silver clusters on glassy carbon (GC) has been proposed. It was found that silver clusters could be formed on a layer of positively charged poly(diallyldimethylammonium) (PDDA) anchored to a carbon surface by 4-aminobenzoic acid when a drop containing silver nanoparticles was deposited on it. The characteristics of the obtained silver clusters have been investigated by atomic force microscopy (AFM), SERS and an SERS-based Raman mapping technique in the form of line scanning. The AFM image shows that the silver clusters consist of several silver nanoparticles and the size of the clusters is in the range 80-100 nm. The SERS spectra of different concentrations of rhodamine 6G (R6G) on the silver clusters were obtained and compared with those from a silver colloid. The apparent enhancement factor (AEF) was estimated to be as large as 3.1 x 10(4) relative to silver colloid, which might have resulted from the presence of 'hot-spots' at the silver clusters, providing a highly localized electromagnetic field for the large enhancement of the SERS spectra of R6G. The minimum electromagnetic enhancement factor (EEF) is estimated to be 5.4 x 10(7) by comparison with the SERS spectra of R6G on the silver clusters and on the bare GC surface.
Resumo:
Monodispersed nanoparticles of Ag(I)-polymer hybrids have been prepared by using designed crown-ether-centred two-armed copolymers to chelate Ag+ ions at the interface of organic-aqueous solutions. The copolymer-Ag+ complex nanoparticles, as well as the reduced copolymer-Ag nanoparticles, have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), and x-ray photoelectron spectroscopy (XPS). The particle size can be varied by simply changing the polymer concentration, the monomers, and/or the molecular weight. The copolymer-Ag(I) hybrids exhibit weak photoluminescence, which was substantially enhanced after the hybrids were reduced to copolymer-silver nanoparticles with UV irradiation.
Resumo:
Large-scale, uniform plasmid deoxyribonucleic acid (DNA) network has been successfully constructed on 11-mercaptoundecanoic acid modified gold (111) surface using a self-assembly technique. The effect of DNA concentration on the characteristics of the DNA network was investigated by atomic force microscopy. It was found that the size of meshes and the height of fibers in the DNA network could be controlled by varying the concentration of DNA with a constant time of assembly of 24 h.
Resumo:
Two- and three-dimensional Au nanoparticle/[tetrakis(N-methylpyridyl)porphyrinato]cobalt (CoTMPyP) nanostructured materials were prepared by "bottom-up" self-assembly. The electrocatalytic and plasmonic properties of the Au nanoparticle/CoTMPyP self-assembled nanostructured materials (abbreviated as Au/CoTMPyP SANMs) are tunable by controlled self-assembly of the An nanoparticles and CoTMPyP on indium tin oxide (ITO) electrode. The electrocatalytic activity of the Au/CoTMPyP SANMs can be tuned in two ways. One way is that citrate-stabilized An nanoparticles are positioned first on ITO surface with tunable number density, and then positively charged CoTMPyP ions are planted selectively on these gold sites. The other way is that An nanoparticles and CoTMPyP are deposited by virtue of layer-by-layer assembly, which can also tune the amount of the as-deposited electrocatalysts. FE-SEM studies showed that three-dimensional SANMs grow in the lateral expansion mode, and thermal annealing resulted in both surface diffusion of nanoparticles and atomic rearrangement to generate larger gold nanostructures with predominant (I 11) facets.
Resumo:
Single crystal nanoplates with thickness less than 30 nm, characterized by hexagonal and truncated triangular shapes bounded mainly by {111} facets, were obtained in large quantities by aspartate reduction of gold chloride.
Resumo:
The preparative procedure of a kind of phospholipid/alkanethiol bilayers on a planar macroelectrode was copied to the as-prepared gold colloid electrodes. The electrochemical and spectral results show that the bilayers on colloid electrodes are interdigited, which are different from their 2-D counterparts on a planar macroelectrode.
Resumo:
Various metal-chitosan nanocomposites were synthesized, including silver (Ag), gold (Au), platinum (Pt), and palladium (Pd) in aqueous solutions. Metal nanoparticles were formed by reduction of corresponding metal salts with NaBH4 in the presence of chitosan. And chitosan molecules adsorbing onto the surface of as-prepared metal nanoparticles formed the corresponding metal-chitosan nanocomposites. Transmission electron microscopy (TEM) images and UV-vis spectra of the nanocomposites revealed the presence of metal nanoparticles. Comparison of all the resulting particles size, it shows that silver nanoparticles are much larger than others (Au, Pt and Pd). In addition, the difference in particles size leads to develop different morphologies in the films cast from prepared metal-chitosan nanocomposites. Polarized optical microscopy (POM) images show a batonet-like structure for Ag-chitosan nanocomposites film, while for the films cast from other metal (Au, Pt, and Pd)-chitosan nanocomposites, some branched-like structures with a few differences among them were observed under POM observation.
Resumo:
The present work describes a convenient approach to fabricate networked nonspherical gold nanostructures by using [G-2]-CO2H dendrimer and toluene as capping and bridging agents in a CH2Cl2 and H2O biphasic system. A controlled linear assembly is achieved without the use of any catalyst at room temperature. UV-vis spectrum, transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) analysis show that the product is well networked nanostructures with diameter of 4-10 nm and consists of coalesced face-centered cubic gold nanocrystals. Extended experiments reveal that both benzene and dimethylbenzene can also inhabit the gold ions to make them crosslinked, prolong the nucleation points and eventually facilitate the formation of the networks.
Resumo:
We report the synthesis of hexadecyltrimethylammonium bromide (CTAB)-stabilized cubic Pt nanoparticles by NaBH4 reduction of H2PtCl6 in aqueous CTAB solution. These Pt nanoparticles (average size of 7 nm) were well dispersed in aqueous solution and stable at least for 2 months. Addition of a trace amount of AgNO3 can alter the morphology of these Pt nanoparticles. More interestingly, the as-prepared uniform Pt nanoparticles were further developed into bigger Pt nanoagglomerates (similar to 20 to 47 nm) by a seed-mediate growth process. Dentritic and spherical Pt nanoagglomerates can be synthesized by altering the incubation time and their size can be tuned by controlling the amount of the seeds added.