151 resultados para geometry algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of integrated intensity of rocking curves, the multiplicity factor and the diffraction geometry factor for single crystal X-ray diffraction (XRD) analysis were proposed and a general formula for calculating the content of mixed phases was obtained. With a multifunction four-circle X-ray double-crystal diffractometer, pole figures of cubic (002), {111} and hexagonal {1010} and reciprocal space mapping were measured to investigate the distributive character of mixed phases and to obtain their multiplicity factors and diffraction geometry factors. The contents of cubic twins and hexagonal inclusions were calculated by the integrated intensities of rocking curves of cubic (002), cubic twin {111}, hexagonal {1010} and {1011}.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compared with the ordinary adaptive filter, the variable-length adaptive filter is more efficient (including smaller., lower power consumption and higher computational complexity output SNR) because of its tap-length learning algorithm, which is able to dynamically adapt its tap-length to the optimal tap-length that best balances the complexity and the performance of the adaptive filter. Among existing tap-length algorithms, the LMS-style Variable Tap-Length Algorithm (also called Fractional Tap-Length Algorithm or FT Algorithm) proposed by Y.Gong has the best performance because it has the fastest convergence rates and best stability. However, in some cases its performance deteriorates dramatically. To solve this problem, we first analyze the FT algorithm and point out some of its defects. Second, we propose a new FT algorithm called 'VSLMS' (Variable Step-size LMS) Style Tap-Length Learning Algorithm, which not only uses the concept of FT but also introduces a new concept of adaptive convergence slope. With this improvement the new FT algorithm has even faster convergence rates and better stability. Finally, we offer computer simulations to verify this improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used Plane Wave Expansion Method and a Rapid Genetic Algorithm to design two-dimensional photonic crystals with a large absolute band gap. A filling fraction controlling operator and Fourier transform data storage mechanism had been integrated into the genetic operators to get desired photonic crystals effectively and efficiently. Starting from randomly generated photonic crystals, the proposed RGA evolved toward the best objectives and yielded a square lattice photonic crystal with the band gap (defined as the gap to mid-gap ratio) as large as 13.25%. Furthermore, the evolutionary objective was modified and resulted in a satisfactory PC for better application to slab system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digitization is the main feature of modern Information Science. Conjoining the digits and the coordinates, the relation between Information Science and high-dimensional space is consanguineous, and the information issues are transformed to the geometry problems in some high-dimensional spaces. From this basic idea, we propose Computational Information Geometry (CIG) to make information analysis and processing. Two kinds of applications of CIG are given, which are blurred image restoration and pattern recognition. Experimental results are satisfying. And in this paper, how to combine with groups of simple operators in some 2D planes to implement the geometrical computations in high-dimensional space is also introduced. Lots of the algorithms have been realized using software.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of image restoration is to restore the original clear image from the existing blurred image without distortion as possible. A novel approach based on point location in high-dimensional space geometry method is proposed, which is quite different from the thought ways of existing traditional image restoration approaches. It is based on the high-dimensional space geometry method, which derives from the fact of the Principle of Homology-Continuity (PHC). Begin with the original blurred image, we get two further blurred images. Through the regressive deducing curve fitted by these three images, the first iterative deblured image could be obtained. This iterative "blurring-debluring-blurring" process is performed till reach the deblured image. Experiments have proved the availability of the proposed approach and achieved not only common image restoration but also blind image restoration which represents the majority of real problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel geometric algorithm for blind image restoration is proposed in this paper, based on High-Dimensional Space Geometrical Informatics (HDSGI) theory. In this algorithm every image is considered as a point, and the location relationship of the points in high-dimensional space, i.e. the intrinsic relationship of images is analyzed. Then geometric technique of "blurring-blurring-deblurring" is adopted to get the deblurring images. Comparing with other existing algorithms like Wiener filter, super resolution image restoration etc., the experimental results show that the proposed algorithm could not only obtain better details of images but also reduces the computational complexity with less computing time. The novel algorithm probably shows a new direction for blind image restoration with promising perspective of applications.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particle Swarm Optimization (PSO) algorithm is often used for finding optimal solution, but it easily entraps into the local extremum in later evolution period. Based on improved chaos searching strategy, an enhanced particle swarm optimization algorithm is proposed in this study. When particles get into the local extremum, they are activated by chaos search strategy, where the chaos search area is controlled in the neighborhood of current optimal solution by reducing search area of variables. The new algorithm not only gets rid of the local extremum effectively but also enhances the precision of convergence significantly. Experiment results show that the proposed algorithm is better than standard PSO algorithm in both precision and stability.