83 resultados para genesis
Resumo:
Natural gas pays more important role in the society as clean fuel. Natural gas exploration has been enhanced in recent years in many countries. It also has prospective future in our country through "85" and "95" national research. Many big size gas fields have been discovered in different formations in different basins such as lower and upper Paleozoic in Erdos basin, Tertiary system in Kuche depression in Tarim basin, Triassic system in east of Sichuan basin. Because gas bearing basins had been experienced multiple tectogenesis. The characteristics of natural gases usually in one gas field are that they have multiple source rocks and are multiple maturities and formed in different ages. There has most difficult to research on the gas-rock correlation and mechanism of gas formation. Develop advanced techniques and methods and apply them to solve above problems is necessary. The research is focused on the critical techniques of geochemistry and physical simulation of gas-rock correlation and gas formation. The lists in the following are conclusions through research and lots of experiments. I 8 advanced techniques have been developed or improved about gas-rock correlation and gas migration, accumulation and formation. A series of geochemistry techniques has been developed about analyzing inclusion enclave. They are analyzing gas and liquid composition and biomarker and on-line individual carbon isotope composition in inclusion enclave. These techniques combing the inclusion homogeneous temperature can be applied to study on gas-rock correlation directly and gas migration, filling and formation ages. Technique of on-line determination individual gas carbon isotope composition in kerogen and bitumen thermal pyrolysis is developed. It is applied to determine the source of natural is kerogen thermal degradation or oil pyrolysis. Method of on-line determination individual gas carbon isotope composition in rock thermal simulation has being improved. Based on the "95"former research, on-line determination individual gas carbon isotope composition in different type of maceral and rocks thermal pyrolys is has been determined. The conclusion is that carbon isotope composition of benzene and toluene in homogenous texture kerogen thermal degradation is almost same at different maturity. By comparison, that in mixture type kerogen thermal pyrolysis jumps from step to step with the changes of maturity. This conclusion is a good proof of gas-rock dynamic correlation. 3. Biomarker of rock can be determined directly through research. It solves the problems such as long period preparing sample, light composition losing and sample contamination etc. It can be applied to research the character of source rock and mechanism of source rock expulsion and the path of hydrocarbon migration etc. 4. The process of hydrocarbon dynamic generation in source rock can be seen at every stage applying locating observation and thermal simulation of ESEM. The mechanism of hydrocarbon generation and expulsion in source rock is discussed according to the experiments. This technique is advanced in the world. 5. A sample injection system whose character is higher vacuum, lower leaks and lower blank has been built up to analyze inert gas. He,Ar,Kr and Xe can be determined continuously on one instrument and one injection. This is advanced in domestic. 7. Quality and quantity analysis of benzene ring compounds and phenolic compounds and determination of organic acid and aqueous gas analysis are applied to research the relationship between compounds in formation water and gas formation. This is another new idea to study the gas-rock correlation and gas formation. 8. Inclusion analysis data can be used to calculate the Paleo-fluid density, Paleo-geothermal gradient and Paleo-geopressure gradient and then to calculate the Paleo-fluid potential. It's also a new method to research the direction of hydrocarbon migration and accumulation. 9. Equipment of natural gas formation simulation is produced during the research to probe how the physical properties of rock affect the gas migration and accumulation and what efficiency of gas migrate and factors of gas formation and the models of different type of migration are. II study is focused on that if the source rocks of lower Paleozoic generated hydrocarbon and what the source rocks of weathered formation gas pool and the mechanism of gas formation are though many advanced techniques application. There are four conclusions. 1.The maturity of Majiagou formation source rocks is higher in south than that in north. There also have parts of the higher maturity in middle and east. Anomalous thermal pays important role in big size field formation in middle of basin. 2. The amount of gas generation in high-over maturity source rocks in lower Paleozoic is lager than that of most absorption of source rocks. Lower Paleozoic source rocks are effective source rocks. Universal bitumen exists in Ordovician source rocks to prove that Ordovician source rocks had generated hydrocarbon. Bitumen has some attribution to the middle gas pool formation. 3. Comprehensive gas-rock correlation says that natural gases of north, west, south of middle gas field of basin mainly come from lower Paleozoic source rocks. The attribution ratio of lower Paleozoic source rocks is 60%-70%. Natural gases of other areas mainly come from upper Paleozoic. The attribution ratio of upper Paleozoic source rocks is 70%. 4. Paleozoic gases migration phase of Erdos basin are also interesting. The relative abundance of gasoline aromatic is quite low especially toluene that of which is divided by that of methyl-cyclohexane is less than 0.2 in upper Paleozoic gas pool. The migration phase of upper Paleozoic gas may be aqueous phase. By comparison, the relative abundance of gasoline aromatic is higher in lower Paleozoic gas. The distribution character of gasoline gas is similar with that in source rock thermal simulation. The migration phase of it may be free phase. IH Comprehensive gas-rock correlation is also processed in Kuche depression Tarim basin. The mechanism of gas formation is probed and the gas formation model has been built up. Four conclusions list below. 1. Gases in Kuche depression come from Triassic-Jurassic coal-measure source rocks. They are high-over maturity. Comparatively, the highest maturity area is Kelasu, next is Dabei area, Yinan area. 2. Kerogen thermal degradation is main reason of the dry gas in Kuche depression. Small part of dry gas comes from oil pyrolysis. VI 3.The K12 natural gas lays out some of hydro-gas character. Oil dissolved in the gas. Hydro-gas is also a factor making the gas drier and carbon isotope composition heavier. 4. The mechanism and genesis of KL2 gas pool list as below. Overpressure has being existed in Triassic-Jurassic source rocks since Keche period. Natural gases were expulsed by episode style from overpressure source rocks. Hetero-face was main migration style of gas, oil and water at that time. The fluids transferred the pressure of source rocks when they migrated and then separated when they got in reservoir. After that, natural gas migrated up and accumulated and formed with the techno-genesis. Tectonic extrusion made the natural gas overpressure continuously. When the pressure was up to the critical pressure, the C6-C7 composition in natural gas changed. The results were that relative abundance of alkane and aromatic decreased while cycloalkane and isoparaffin increased. There was lots of natural gas filling during every tectonic. The main factors of overpressure of natural gas were tectonic extrusion and fluid transferring pressure of source rocks. Well preservation was also important in the KL2 gas pool formation. The reserves of gas can satisfy the need of pipeline where is from west to east. IV A good idea of natural gas migration and accumulation modeling whose apparent character is real core and formation condition is suggested to model the physical process of gas formation. Following is the modeling results. 1. Modeling results prove that the gas accumulation rule under cap layer and gas fraction on migration path. 2. Natural gas migration as free phase is difficult in dense rock. 3. Natural gases accumulated easily in good physical properties reservoirs where are under the plugging layer. Under the condition of that permeability of rock is more than 1 * 10~(-3)μm~(-1), the more better the physical properties and the more bigger pore of rock, the more easier the gas accumulation in there. On the contrary, natural gas canonly migrate further to accumulate in good physical properties of rock. 4. Natural gas migrate up is different from that down. Under the same situation, the amount of gas migration up is lager than that of gas migration down and the distance of migration up is 3 times as that of migration down. 5. After gas leaks from dense confining layer, the ability of its dynamic plug-back decreased apparently. Gas lost from these arils easily. These confining layer can confine again only after geology condition changes. 6. Water-wetted and capillary-blocking rocks can't block water but gases generally. The result is that water can migrate continuously through blocking rocks but the gases stay under the blocking rocks then form in there. The experiments have proved the formation model of deep basin gas.
Resumo:
The mechanism of gold ore formation in the eastern Tianshan Mountains, Xinjiang Uygur Autonomous Region, that has been dealt with from various aspects, remains unclear. On the basis of investigations of regional geology, ore deposit geology, and microscopic observations of ores and related rocks of the Jinwozi, the 210, and the Mazhuangshan gold ore deposits, this thesis made a systematic research on the microthermometry of gangue quartz-hosted fluid inclusions, gas, liquid ion and rare earth element compositions and hydrogen, oxygen isotope compositions of sulfide- and quartz-hosted fluid inclusions, and sulfur and lead isotope compositions of sulfide ore minerals from the major ores in the three deposits. On the basis of the above synthetic studies, sources of ore-forming fluids and metals, and mechanism of gold ore formation in the region were discussed. Gas compositions of pyrite- and sphalerite-hosted fluid inclusions were first analyzed in this thesis. Compared with gangue quartz-hosted fluid inclusions, the sulfide-hosted ones are richer in gaseous species CO2, CO, and CH4 etc. Both gas and liquid CO2 are commonly observed in fluid inclusions, whereas halite daughter minerals rarely occur. Ore-forming fluids for the three gold ore deposits are characteristically of medium to low temperatures, medium to low salinities, are rich in CO2 and Na+, K+, Cl" ions. Gas covariation diagrams exhibit linear trends that are interpreted as reflecting mixing between the magamtic fluid and meteoric-derived groundwater. Regarding rare earth element compositions, the Jinwozi and the 210 deposits show moderate to strong LREE/HREE fractionations with negative Eu anomalies. However, the Mazhuangshan deposit shows little LREE/HREE fractionation with positive Eu anomalies. Hydrogen and oxygen isotope compositions of pyrite-hosted fluid inclusions that were first analyzed in this thesis indicate the presence of magmatic water. Hydrogen and oxygen isotope compositions of pyrite- and quartz-hosted fluid inclusions suggest mixing between magmatic water and meteoric-derived groundwater. Sulfur and lead isotope compositions of sulfide ore minerals indicate multi-sources for the metallogenetic materials that range from the crust to the mantle. On the basis of the above synthetic studies, genesis of the gold ore deposits in the eastern Tianshan Mountains was approached. From the Middle-Late Hercynian to Early Indosinian, geodynamic regime of the region was changing from the collisional compression to the post-collisional extension. During the period, magmas were derived from the crust and the mantle and carried metallogenetic materials. Magma intrusion in the upper crust released the magmatic fluids, and drove circulation of groundwater. Mixing of magmatic fluid with groundwater, and extraction of metallogenetic materials from the country rocks are the mechanism for the gold ore formation in the eastern Tianshan Mountains.
Resumo:
The Tiezhai intrusive complex is located in the north of the Luxi block, Shandong province, eastern China. It lies ~30 km west of the Tanlu fault, and is at the cross of the Wujing and Jiushan faults. The Tiezhai complex was formed about 120~130 Ma, when large-scale magmatism was active in eastern part of North China. This paper carries out petrochemical and geochemical study on the Tiezhai intrusive complex, and discusses its genesis in detail. The Tiezhai intrusive complex can be subdivided into three rock series. The first is the gabbro-diorite series formed in early stage. Its composition variation shows 01 and Cpx fractional crystallization trend. The second is the porphyritic diorite and monzonite series, showing dominating Hb fractional differentiation. Their composition variation shows Hb fractional crystallization trend. The third is the porphyritic quartz monzonite with K-feldspar megacrysts, showing weakly Hb and Bi fractional crystallization trend. All types of rocks in the Tiezhai complex are belonging to the high-K cac-alkaline series. They have elevated Sr (450-1660 ppm), Ba (210-1780 ppm) and relatively low Rb (30-100 ppm). For the gabbro-dioritic rocks in the early stage, the abundances of Ni (20-250 ppm), Cr (50-350 ppm), V(l30-250 ppm) and Co (20-40 ppm) are high, indicating a mantle origin. All rocks have negative anormalies of Nb, Ta, Ti and P, and enriched LREE and strong differentiated REE patterns. The porphyritic monzonites and quartz monzonites have very low HREE, Yb and Y contents and positive Eu anormalies, similar to adakite. Most rocks have lowε_(Nd)(t) of-1.5~-10.9, and high (~(87)Sr/~(86)Sr)_i of 0.704~0.709. The data have characters of enriched lithosphere mantle (EMI). In summary, the Tiezhai intrusive complex was inferred to be generated by a mantle derived magma through fractional crystallization. When the primary magma gathered in some place between crust and mantle, the crystallization started and causing magma evolution. The remaining / evolved magma ascended and emplaced again and again in the upper crust in Tiezhai area. Then Tiezhai complex formed. The porphyritic monzonites and quartz monzonites have major and trace element characters of typical adakite, but they are likely to be generated by Hb fractional crystallization.
Resumo:
These are two parts included in this report. In the first part, the zonation of the complexes in its series, lithofacies, the depth of magma source and chambers is discussed in detailed for the first time based on the new data of petrol-chemistry, isotopes, tectono-magma activity of Mesozoic volcano-plutonic complexes in the southern Great Hinggan Mts. Then, the genetic model of the zonality, double overlapped layer system, is proposed. The main conclusions are presented as follows: The Mesozoic volcanic-plutonic complexes in the southern Great Hinggan were formed by four stages of magma activity on the base of the subduction system formed in late Paleozoic. The Mesozoic magmatic activity began in Meso-Jurassic Epoch, flourished in late Jurassic Epoch, and declined in early Cretaceous Epoch. The complexes consist dominantly of acidic rocks with substantial intermediate rocks and a few mefic ones include the series of calc alkaline, high potassium calc alkaline, shoshonite, and a few alkaline. Most of those rocks are characterized by high potassium. The volcano-plutonic complexes is characterized by zonality, and can be divided mainly into there zones. The west zone, located in northwestern side of gneiss zone in Great Xinggan mountains, are dominated of high potassium basalts and basaltic andesite. The middle zone lies on the southeast side of the Proterozoic gneiss zone, and its southeast margin is along Huangganliang, Wushijiazi, and Baitazi. It composed of dominatly calc-alkaline, high potassium calc-alkaline rocks, deep granite and extrusive rhyolite. The east zone, occurring along Kesheketong Qi-Balinyou Qi-Balinzuo Qi, is dominated of shoshonite. In generally, southeastward from the Proterozoic gneiss zone, the Mesozoic plutons show the zones-mica granitites zone, hornblende-mica granitite zone, mica-hornblende granitite zone; the volcanic rocks also display the zones of calc alkaline-high potassium calc alkaline and shoshonites. In the same space, the late Paleozoic plutons also display the same zonality, which zones are combined of binary granite, granodiorite, quartz diorite and diorite southeast wards from the gneiss. Meso-Jurassic Epoch granite plutons almost distribute in the middle zone on the whole. Whereas late Jurassic Epoch volcanic rocks distribute in the west and east zone. This distribution of the volcano-plutonic complexes reveals that the middle zone was uplifted more intensively then the other zones in Meso-Jurassic and late Jurassic Epoches. Whole rock Rb-Sr isochron ages of the high potassium calc-alkaline volcanic rocks in the west zone, the calc-alkaline and high potassium calc-alkaline granite the middle zone, shoshonite in the east zone are 136Ma, 175Ma and 154Ma, respectively. The alkaline rocks close to the shoshonite zone is 143Ma and 126Ma. The isochron ages are comparable well with the K-Ar ages of the rocks obtained previously by other researchers. The compositions of Sr ans Nd isotopes suggest that the source of Mesozoic volcanic-plutonic complexes in Great Hinggan Mts. is mostly Paleo-Asia oceanic volcanic-sedimentary rocks, which probably was mixed by antiquated gneiss. The tectonic setting for Mesozoic magmatism was subductive continental margin. But this it was not directly formed by present west Pacific subduction. It actully was the re-working of the Paleozoic subduction system( which was formed during the Paleo-Asia ocean shortening) controlled by west Pacific subduction. For this reason, Although Great Hinggan Mts. is far away from west Pacific subduction zone, its volcanic arc still occurred echoing to the volcanic activities of east China, it, but the variation trend of potassium content in volcano-plutonic complexes of Great Hinggan is just reverse to ones of west Pacific. The primitive magmas occurred in the southern Great Hinggan Mts. Include high-potassium calc-alkaline basalt, high potassium calc-alkaline rhyolite, high potassium rhyolite, non-Eu negative anomaly trachy-rhyolite et al. Therefore, all of primitive magmas are either mafic or acid, and most of intermediate rocks occurring in the area are the products of Mesozoic acid magma contaminated by the Paleozoic volcanic- sedimentary rocks. The depth of those primitive magma sources and chambers gradually increase from northwest to southeast. This suggests that Paleozoic subduction still controlled the Mesozoic magmatism. In summary, the lithosphere tectonic system of the southern Great Hinggan Mts. controlling Mesozoic magmatism is a double overlapped layer system developing from Paleozoic subduction system. For this reason, the depth of crust of the southern Great Hinggan Mts. is thicker than that of its two sides, and consequently it causes regional negative gravity abnormity. The second part of this report shows the prolongation of the research work carried on in my doctor's period. Author presents new data about Rb-Sr and Sm-Nd isotopic compositions and ages, geochamical features, genesis mineralogy and ore deposit geology of the volcanic rocks in Kunyang rift. On the base of the substantial work, author presents a prospect of copper bearing magnetite ore deposit. The most important conclusions are as follows: 1. It is proved that all of these carbonatites controlled by a ringing structure system in Wuding-Lufeng basin in the central Yunnan were formed in the Mesoproterozoic period. Two stages could be identified as follows: in the first stage, carbonatitic volcanic rocks, such as lavas(Sm-Nd, 1685Ma), basaltic porphyrite dykes(Sm-Nd, 1645Ma), pyroclastic rocks and volcaniclastic sedimentary rocks, formed in the outer ring; in the second stage, carbonatitic breccias and dykes(Rb-Sr, 1048 Ma) did in the middle ring. The metamorphic age of the carbonatitic lavas (Rb-Sr, 893 Ma) in the outer ring was determined. The magma of carbonatitic volcanic rocks derived mainly form enriched mantle whose basement is depleted mantle that had been metasomated by mantle fluid and contaminated by Archaean lower crust. Carbonatitic spheres were discovered in ore bearing layers in Lishi copper mining in Yimen recently, which formed in calcite carbonatitic magma extrusion. This discovery indicates that the formation of copper ore deposit genesis relates to carbonatitic volcanic activity. The iron and copper ore deposits occurring in carbonatitic volcanic- sedimentary rocks in Kunyang rift results from carbonatitic magmatism. Author calls this kind of ore deposits as subaqueous carbonatitic iron-copper deposit. The magnetic anomaly area in the north of Lishi copper mining in Yimen was a depression more lower than its circumference. Iron and copper ores occurrig on the margin of the magnetic anomaly are volcanic hydrothermal deposit. The magnetic body causing the magnetic anomaly must be magnetite ore. Because the anomaly area is wide, it can be sure that there is a large insidious ore deposit embedding there.
Resumo:
Various numbers of ancient landslides of various scales are frequently distributed on both banks of reservoirs, especially large reservoirs, both in China and abroad. During inundation and operation of theses reservoirs, some of the landslides are reactivated, which caused losses of people's lives and properties to various extents, some even disasters. Systematic studies are, however, very few on the reservoir-induced reactivation mechanism and development tendency prediction. Based on investigation of reservoir-induced reactivation phenomena of ancient landslides and relevant existing research problems, a systematic study is carried out on the field identification, induced reactivation mechanism, development tendency prediction, risk decision-making and treatment of reservoir-related ancient landslides, through analysis of large numbers of engineering geological investigation results, scientific experimental and research results, in combination with prevention and treatment practices of reservoir-related landslides both in China and abroad, and a series of research results have been obtained. 1. On the basis of study of the distribution features, genesis mechanism of ancient landslides on river banks, a set of scientific methods are summarized on field identification of ancient landslides, and a significant method named "lithologic sequence method" or "indicator layer method", is proposed, which is proved to be very useful. 2. A detail study is made on the reservoir-induced hydraulic effects and material mechanic effects (or softening effects) on the ancient landslide through model and case studies, which concludes that the magnitude and properties of reservoir-induced hydraulic effects are related to the shapes of sliding planes, water content and permeability of landslide materials and variation rate and magnitude of reservoir levels; the magnitude of material mechanic effects are related to the material composition (including mineral composition and grain size), natural water content and saturation state of sliding zones. Also a sensitive analysis is made on the factors that are related to the stabilities of the landslides, which indicate that the stability of a landslide is more sensitive to the groundwater head h_w in the slides and the inner friction angleψof sliding zones than others. 3. The joint inducing mechanism of rainfall and reservoir is also discussed in the paper through model analysis and case study, which proves that reservoir inundation increases firstly the sensitivity of a landslides to rainfall through reduction of its stability or cracking deformation which will increase the rainfall infiltration to the slide body, and then rainfall triggers reactivation or intensifies the reservoir-induced deformation of a landslide. 4. Based on rheologic test results of sliding zones of several reservoir-related ancient landslides, the rheologic characteristics of sliding zones have been discussed in detail and several typical rheologic models have been set up, which well explains the dynamic process of slide deformation. The response types to reservoir inundation and development tendency of reservoir -related ancient landslide are discussed in the paper based on field investigation results. And prediction methods for reservoir-related landslides have been studied based on the Mate-Synthetic principle of quantitative and qualitative analysis, as well as combination of computation and internal mechanism analysis, and a rheologic analytical method is proposed which is proved very useful for prediction of the landslide development tendency. 6. In disaster-prevention and treatment of reservoir-related landslides, risk decision-making has been proved very significant both in engineering and economics. Based on the practices in disaster-prevention and treatment of reservoir-related landslides both in China and abroad, the disaster-prevention risk decision-making for reservoir-related landslides has been proposed in terms of philosophy, methods and procedures, and well put into practice. A summary is also made through case study of the experiences of treatment of reservoir-related landslides both in China and abroad in terms of principle, methods and technical lines. 7 A detail study is made as a case study of the reactivated Maoping ancient landslide on the left bank of the Geheyan Reservoir on Qingjiang river in Hubei province, China, including its field identification features, reservoir-induced reactivation characteristics and mechanism, development tendency prediction and proposed counter measures based on risk analysis.
Resumo:
By applying multi-discipline theory and methods comprehensively and with full use of computer, the paper deeps into studying changing rule and control factor of fluid field of ES2 Shengtuo oil field during waterflood development, physical and chemical function, and stress. Matrix field, network field, fluid field, stress field and physical chemistry field and fluid model for dynamic function were established. Macroscopic and microscopic genesis mechanics, distribution rule and control factor of remaining oil were revealed. Remaining oil and emulate model were established. Macroscopic and microscopic distribution rule of mover remaining oil were predicted, several results were achieved as following: The distribution of remaining oil was controlled by micro-structure. At the same development stage, remaining oil saturation of the wells located in higher position of micro-structure is higher than the average saturation in the same layer. The water content ratio has same law. It is the enrichment district that the high position of micro-structure controlled by seal faults. The remaining oil distribution was affected by sedimentary micro-facies, micro-structure, fault sealing, reservoir heterogeneity and affusion-oil extraction. On the plane, the zone owning higher saturation of remaining oil is the area that at the edge miacro-facies and sand-body distribution discontinuously; on the section, the content of waterflood of the upper or middle-upper oil layer of positive rhythm and positive comprehensive rhythm is lower, middle and weak waterflood is main, remaining oil is in enrichment relatively. The remaining oil is relative enrichment at the zones of well network of affusion and oil extraction not affected. 4D dynamic model of reservoir of Es2in Shengtuo oil field was established. Macroscopic and microscopic forming mechanics, distribution rule and control factor were revealed. The emulate model of dynamic function of Shengtuo oil field was established, the space distribution of remaining oil were predicted. Reservoir flow field, matrix field, network field, seep field, physical and chemical field, stress field and fluid field models were established. Reservoir flow field character and distribution were revealed. An improvement of the development geology theory in continental fault depression continental basin was brought on.
Resumo:
The Sawuer gold belt is located in the transition belt between Siberian plate and Kazakhstan-Junggar plate. Based on the geological and geochemical studies on the Kuoerzhenkuola and Buerkesidai gold deposits, in Sawuer gold mineralization belt, the time-space structure of mineralization and mineralizing factor are studied, the metallogenic regularity is concluded in thistheses. The ore bodies have the regularity that orebody are of the extensive and compressive in the sallow and depth of volcanic apparatue, respectively, and the vertical extension of orebody is more intensive than the horizontal extension. The gold deposits were controlled by the fractures of volcanic apparatus and regional faults, and featured by the hydrothermal alteration and metasomatism type disseminated mineralization and filling type vein mineralization. By virtue of the geological and geochemical studies on the two deposits that the formation of the two deposits are significantly related to the volcanic activity, we propose new ideas about their origin: (1) the two deposits are located in the same strata, and share the same genesis. (2) both of two deposits are volcanogenic late-stage hydrothermal gold deposits. Based on mapping of volcanic lithofacies and structure for the first time, it is discovered that a volcanic apparatus existed in the study area. Volcanic-intrusive activity can be divided into three cycles and nine lithofacies. where the two deposits are hosted in the same volcanic cycle, in this case, the wall-rock should belong to the same strata. The 40Ar-39Ar age method is employed in this work to analyze the fluid inclusions of quartz in the ore bodies from Kuoerzhenkuola and Buerkesidai gold deposits. The results show that the main mineralization occurred in 332.05 + 2.02-332.59 + 0.5IMa and 335.53 + 0.32Ma~336.78 + 0.50Ma for Kuoerzhenkuola and Buerkesidai gold deposits respectively, indicating that the two deposits are formed almost at the same time, and the metallogenic epoch of the tow deposits are close to those of the hosting rocks formed by volcanic activity of Sawuer gold belt. This geochronological study supplies new evidence for determining the timing of gold mineralization, the geneses of gold deposits? and identifies that in Hercynian period, the Altai developed tectonic-magmatic-hydrothermal mineralization of Early Carboniferous period, except known two metallogenic mineralization periods including tectonic-magmatic-hydrothermal mineralization of Devonian period and Late Carboniferous-Permian period respectively. The study of fluid inclusions indicates that the ore-forming fluid is a type of NaCl-HbO fluid with medium-low temperature and low salinity, Au is transported by the type of auric-sulfur complex (Au (HS)2-), the ore is formed in reduction condition. Hydrogen and oxygen isotopes of fluid inclusions in the major mineralizating stage show that the solutions mainly originated from magmatic water and meteoric water. The fluid mixing and water-rock reaction cause the deposition of Au. The helium and argon isotope compositions of fluid inclusions hosted in pyrite have been measured from Kuoerzhenkuola and Buerkesidai gold deposits in Sawuer gold belt. The results show that the ore-forming fluids of two deposits possessed the same source and is a mixture of mantle- and partial meteoric water-derived fluid, and the reliability of He and Ar isotopic compositions in Hercynian period is discussed. Isotopic studies including H, O, He, C, S, Pb and Sr reveal the same result that the ore-forming fluids of two deposits possessed the same source: the water derived mainly from magmatic water, partially from meteoric water; the mineralizers and ore materials derived mainly from mantle beneath the island arc, and partially from crust. The ore-forming fluids of two deposits are a mixture of mantle-derived fluids being incorporated by crust-derived fluid, and shallow partial meteoric water. Based on these results, it is proposed that the geneses of the two gold deposits are the same, being volcanogenic late-stage hydrothermal gold deposits that the ore-forming fluids filled in fractures of volcanic apparatus and metasomatized the host rocks in the volcanic apparatus. It is the first time we carried out the geophysical exploration, that is, the EH-4 continuous electrical conductivity image system measurement, the results show that relative large-size mineralizing anomalies in underground have been discovered.lt can confirm the law and genesis of the deposits mentioned above, and change the two abandoned mines to current large-size potenial exploration target.
Resumo:
By applying synthetically multi-subject theories, methods and technology, such as petroleum geology, sedimentology, seep mechanics, geochemistry, geophysics and so on; and by making full use of computer; combining quantity and quality, macroscopic and microscopic, intensive static and active description, comprehensive studying and physical modeling, 3 dimension and 4 dimension description; the paper took Wen-33 block of Zhongyuan oil field as an example; and studied reservoir macroscopic and microscopic parameter changing rule and evolve mechanics in different water-blood stage. The reservoir dynamic model and remaining-oil distribution mode was established, and several results were achieved as follows: (1) Three types of parameter gaining, optimizing and whole data body of Wen33th reservoir were established. Strata framework, structure framework, reservoir types and distribution of Wen33th reservoir were discussed. Reservoir genesis types, space distribution law and evolve rule of Wen33th reservoir were explained. 4D dynamic model of macroscopic parameter of reservoir flow dynamic geologic function of Wen33th reservoir was established. The macroscopic remaining-oil distribution and control factor was revealed. The models of the microscopic matrix field, pore-throat network field, fluid field, clay mineral field of Wen-33 block were established. The characters, changing rules and controlled factors in different water stage were revealed. The evolve rule and mechanics of petroleum fluid field in Wen-33 block reservoir were revealed. Macroscopic and microscopic remaining oil distribution mode of Wen-33 block were established. Seven types, namely 12 shapes of dynamic model of microscopic remaining oil were discussed, and the distribution of mover remaining oil was predicted. Emulation model: mathematical model and prediction model of Wen-33 block were established. The changing mechanics of reservoir parameter and distribution of remaining-oil were predicted. Firstly, the paper putting forward that the dynamic geologic function of petroleum development is the factor of controlling remaining-oil, which is the main factor leading to matrix field, network field, clay mineral field, fluid field, physic and chemical field, stress field and fluid field forming and evolving. (10) A set of theories, methods and technologies of investigating, describing, characterizing and predicting complex fault-block petroleum were developed.
Resumo:
Landslides are widely distributed along the main stream banks of the Three Gorges Reservoir area. Especially with the acceleration of the human economic activities in the recent 30 years, the occurrence of landslide hazards in the local area trends to be more serious. Because of the special geological, topographic and climatic conditions of the Three Gorges areas, many Paleo-landslides are found along the gentle slope terrain of the population relocation sites. Under the natural condition, the Paleo-landslides usually keep stable. The Paleo-landslides might revive while they are influenced under the strong rainfall, water storage and migration engineering disturbance. Therefore, the prediction and prevention of landslide hazards have become the important problem involving with the safety of migration engineering of the Three Gorges Reservoir area.The past research on the landslides of the Three Gorges area is mainly concentrated on the stability analysis of individual landslide, and importance was little attached to the knowledge on the geological environment background of the formation of regional landslides. So, the relationship between distribution and evolution of landslides and globe dynamic processes was very scarce in the past research. With further study, it becomes difficult to explain the reasons for the magnitude and frequency of major geological hazards in terms of single endogenic or exogenic processes. It is possible to resolve the causes of major landslides in the Three Gorges area through the systematic research of regional tectonics and river evolution history.In present paper, based on the view of coupling of earth's endogenic and exogenic processes, the author researches the temporal and spacial distribution and formation evolution of major landslides(Volume^lOOX 104m3) in the Three Gorges Reservoir area through integration of first-hand sources statistics, .geological evolution history, isotope dating and numerical simulation method etc. And considering the main formation factors of landslides (topography, geology and rainfall condition), the author discusses the occurrence probability and prediction model of rainfall induced landslides.The distribution and magnitude of Paleo-landslides in the Three Gorges area is mainly controlled by lithology, geological structure, bank slope shape and geostress field etc. The major Paleo-landslides are concentrated on the periods 2.7-15.0 X 104aB.R, which conrresponds to the warm and wettest Paleoclimate stages. In the same time, the Three Gorges area experiences with the quickest crust uplift phase since 15.0X 104aB.P. It is indicated that the dynamic factor of polyphase major Paleo-landslides is the coupling processes of neotectonic movement and Quaternary climate changes. Based on the numerical simulation results of the formation evolution of Baota landslide, the quick crust uplift makes the deep river incision and the geostress relief causes the rock body of banks flexible. Under the strong rainfall condition, the pore-water pressure resulted from rain penetration and high flood level can have the shear strength of weak structural plane decrease to a great degree. Therefore, the bank slope is easy to slide at the slope bottom where shear stress concentrates. Finally, it forms the composite draught-traction type landslide of dip stratified rocks.The susceptibility idea for the rainfall induced landslide is put forward in this paper and the degree of susceptibility is graded in terms of the topography and geological conditions of landslides. Base on the integration with geological environment factors and rainfall condition, the author gives a new probabilistic prediction model for rainfall induced landslides. As an example from Chongqing City of the Three Gorges area, selecting the 5 factors of topography, lithology combination, slope shape, rock structure and hydrogeology and 21 kinds of status as prediction variables, the susceptibility zonation is carried out by information methods. The prediction criterion of landslides is established by two factors: the maximum 24 hour rainfall and the antecedent effective precipitation of 15 days. The new prediction model is possible to actualize the real-time regional landslide prediction and improve accuracy of landslide forecast.
Resumo:
济阳拗陷(胜利油田)为我国仅次于大庆油田的石油生产基地,区内新生代火成岩广泛发育,且为重要的油气藏储层之一,有关该区火成岩与油气藏的成因联系一直是国内外地学工作极为关注的课题和生产部门亟待解的问题。前人对该区火成岩的研究主要集中在火山岩分布、岩石类型、储层性质等方面,很少涉及对火成岩地球化学、形成构造环境、地幔源区特征、岩浆演化以及在油气形成过程中的作用等方面的研究,对与之时空密切共生的次火山岩——辉绿岩研究相对较少,尤其是岩石地球化学的研究工作尚未开展,无法探讨其成岩动力学背景、地幔地球化学、壳幔相互作用以及与火山岩之间的成因联系等一系列问题。本论文主要对济阳拗陷惠民凹陷钻孔揭露的辉绿岩进行了系统的矿物学和地球化学研究,以此探讨了该区辉绿岩的成岩动力学背景、地幔源区特征、岩浆形成与演化,同时通过与区内沙三段中的火山岩(与辉绿岩时空密切共生)地球化学对比,揭示了辉绿岩与火山岩的成因联系。论文获得的主要认识如下: ① 研究区辉绿岩主要矿物为单斜辉石和斜长石,次要矿物主要为橄榄石、斜方辉石、云母、角闪石、钾长石和方解石等,副矿物主要为磷灰石、金属矿物,同时还出现种类繁多的次生矿物,常见的有蛇纹石、绿泥石、钠长石、高岭石、碳酸盐以及形态不则的云母和金属矿物等;光性测定和探针分析结果表明,各种矿物的化学成分变化范围较宽,可能主要与岩浆结晶分异作用和岩浆期后不同程度的热液蚀变作用有关。 ② 岩石的主要元素、微量元素和稀土元素(REE)的含量范围变化较大,富集高场强元素(HFSE)、具有异常Sr、Nd同位素组成(相对高87Sr/86Sr(0.704094~0.708223)和相对高143Nd/144Nd(0.512604~0.512856))是本区辉绿岩重要的地球化学特征。相关分析结果表明,该区辉绿岩HFSE和REE的含量受磷灰石含量控制,HFSE和REE之间存在较好的正相关关系,证实其HFSE高含量与岩浆地壳物质混染作用有关。 ③ 在一系列岩石分类和类型划分图解上,岩石为钠质碱性系列岩石;岩石具有相似的过渡元素、不相溶元素和REE配分模式,其大离子亲石元素(LILE)、HFSE和REE明显高于原始地幔(PM)和洋中脊玄武岩(MORB);Sr、Nd同位素组成在87Sr/86Sr-143Nd/144Nd图中偏离典型地幔演化趋势,位于DMM与EM2地幔端元之间;成岩环境为大陆板内拉张环境;这些特征均表明本区辉绿岩具有异常地幔源区, 为DMM、EM1和EM2三端元混合的混合地幔。 ④ 研究区辉绿岩与区内沙三段中的火山岩具有相似的主要元素、微量元素、稀土元素和Sr-Nd同位素组成,过渡元素、不相容元素和REE配分模式不具明显区别,微量元素之间的比值变化范围重叠、且与交代富集地幔端元(EM1和EM2)相近,这些均表明两类岩石为同源不同岩相的产物,辉绿岩为火山岩为次火山岩相。 ⑤ 结合有关模拟计算结果,初步建立了研究区辉绿岩成因模式。新生代,随着太平洋板块向西俯冲,引发北东向郯庐深大断裂带的重新活动,俯冲进行地幔楔中的沉积物脱水形成的流体和沿郯庐深大断裂带上升的地幔深部流体与亏损地幔相互作用,形成该区具DMM、EM1和EM2三端元混合特征的异常地幔;这种异常地幔部分熔融形成的熔体(原始岩浆)在岩浆房(或上升过程中)遭受地壳物质的混染作用,形成本区辉绿岩和火山岩的母岩浆;大部分母岩浆沿区内构造薄弱地带快速喷发形成本区的火山岩,少量喷发速度较慢的岩浆结晶形成次火山岩相的辉绿岩。
Resumo:
陕南勉略宁三角地区是我国西北重要的铜金多金属成矿远景区,已发现多种类型的铜、铁、铅、锌、金和银等多金属矿床(点)多达上百处,除金矿床为大-超大型外(煎茶岭和李家沟金矿床),该区铜金多金属矿床多与中酸性侵入体有关,但规模均不大(中-小型),其中铜厂铜矿床在该区最具找矿前景和代表性,规模也仅为中型,远景储量为大型,可谓是铜金多金属矿床(点)星罗棋布,仅是“只见星星,不见月亮”。多年来,勉略宁地区曾作过大量的基础地质和找矿地质工作,并取得了一定的找矿成果,但九十年代以来,本区的找矿难度越来越大,难以取得突破,寻找大型-超大型铜金多金属矿床一直是地质研究工作的难题。本文选择勉略宁地区最具代表性和找矿前景的铜厂铜金多金属矿床为解剖对象,通过流体地球化学和岩石及硫化物单矿物地球化学等研究,结合矿床的地质特征、地球化学、同位素年代学等详细综合与对比,在前人基础上,取得如下认识: (1) 研究区在震旦纪以后,由于扬子板块的碰撞,隆起形成大陆,根据矿床赋矿围岩的岩石地球化学和矿床地球化学研究,提出陕西铜厂铜矿床的成矿大地构造背景可能为碰撞造山。 (2) 铜厂铜矿床的微量元素对比研究发现,Cu等成矿物质的析出→迁移→富集是形成铜矿化和铜矿体的重要方式之一,稀土元素地球化学表明,矿区中矿石矿物的稀土元素组成特征与铜厂闪长岩、钠长岩和细碧岩既有相似之处,也有不同之处,稀土配分模式的对比说明闪长岩与地层(细碧岩)为成矿作用提供了主要的物质来源; (3) 矿体严格受NWW向与NEE 向两组韧性剪切带控制,主要赋存于闪长岩体北部内外接触带以及岩体内片理化带中; (4) 铜厂铜矿床的成矿流体总体以低温、低盐度为特征,并可能存在富CO2流体,其成矿流体与造山型金矿床成矿流体具有一定相似性; (5) 结合成矿背景和陈矿年代学数据,矿床主成矿时代可能在200-230Ma之间,属于印支期,该期为勉略洋盆闭合的俯冲-碰撞造山作用形成秦岭以挤压作用为特征的造山带时期。 因此,笔者认为,该矿床的成矿大地构造背景应为碰撞造山带,其成矿物质来源以闪长岩和细碧岩为主,成矿流体以低温、低盐度和富CO2为特征,成矿时代以印支期为主,其成矿模式为:印支期,伴随着勉略洋盆闭合俯冲-碰撞形成勉略宁地区复式倒转褶皱及韧-脆性逆冲推覆构造、走滑断层,在矿区发育大量NWW向与NEE 向两组韧性走滑断裂,该期间由于闪长岩体的继续活动,带来了气液和热动力及部分Cu等成矿物质,形成火山变质热液,并与天水混合形成富碱(Na+、K+)和CO2的混合热液,在这种混合热液作用下,使地层细碧岩中Cu等成矿物质大量析出,形成低温、低盐度成矿热液,沿矿区所发育NWW向与NEE 向两组韧性走滑断裂充填沉淀并形成铜矿体。
Resumo:
阳山超大型金矿床位于西秦岭勉略缝合带内,地处陕、甘、川三省交界,是我国近期发现的世界级超大型金矿床。前人对该矿床的研究工作集中于矿床地质、稳定同位素、同位素年代学等方面,但对矿区内岩浆岩的系统研究始终是个空白。阳山金矿矿区内岩浆岩与矿体在时间上和空间上紧密联系,因此深入研究阳山矿区岩浆岩的地球化学特征,同时也对探讨该区构造活动、岩浆活动,揭示成矿过程、建立成矿模型具有重要意义。 本文通过对阳山金矿岩浆岩的研究,结合矿床地质、地球化学特征、大地构造背景等因素,利用主量元素、微量元素、稀土元素系统分析了阳山金矿矿区岩浆岩地球化学特征,获得了以下主要认识: 1 阳山矿区岩浆岩为是钙碱性过铝质花岗岩,岩浆在岩浆房或在侵位过程中,存在岩浆结晶分离演化趋势。 2 安坝矿段305号脉群、311脉群,葛条湾矿段和泥山矿段(除蚀变样品外)出露的岩浆岩具有比较一致的主、微量、稀土元素特征,三者在成因与物质来源上存在紧密的联系。 3 阳山矿区花岗岩的来源主要是地壳组分,同时可能还有早期俯冲带形成物质的参与,在深部地壳物质熔融后,花岗岩在秦岭微板块与扬子板块最终碰撞勉略主缝合带形成之后,于主碰撞晚期应力松弛阶段所形成。碰撞事件诱发了地壳增厚,使页岩或碎屑砂岩质的地壳岩石接近于熔融温度,由于热或水的加入引起部分熔融。 4阳山金矿的成因模型中,变质流体是阳山金矿成矿作用中的主导流体,在不同成矿阶段有少量地表水、岩浆水以及大气水混入。
Resumo:
甘肃文县阳山金矿的探明黄金储量已达308t,平均品位4.74g/t,是我国地质勘查储量最大的金矿床。该矿床产于西秦岭造山带,是一个同碰撞形成的类卡林型金矿床,矿体受EW向韧脆性剪切带控制,赋矿围岩为泥盆系碳质千枚岩-板岩-碳酸盐-硅质岩和侵入其中的花岗斑岩脉。流体成矿过程包括:形成石英-绢云母-黄铁矿组合的早阶段,形成石英-黄铁矿-毒砂-方铅矿等多金属组合的主成矿阶段,形成碳酸盐-辉锑矿-石英网脉的晚阶段。 与矿体关系较为密切的花岗斑岩富集LILE 和 LREE, 亏损 Ba, Sr, Nb, Ta, P 和Ti,ΣREE=54.35~124.01 μg/g ,(La/Yb)N=9.72~27.80,δEu=0.70~0.89, ISr值为0.70806~0.71756,平均0.71107;εNd(t)平均-3.4;Nd模式年龄(T2DM)平均1.34(Ga)。表明花岗斑岩岩浆应源自成熟度较低的中元古代基底地壳物质。花岗斑岩的(206Pb/204Pb)220Ma、(207Pb/204Pb)220Ma和(208Pb/204Pb)220Ma的平均值分别为17.875、15.604和38.296,与秦岭微陆块的中元古代基底和碧口地体碧口群的Pb同位素组成一致。考虑到前人获得碧口群的年龄为1.235~1.367Ga,而秦岭微陆块沿勉略缝合带向南仰冲到碧口地体之上,我们认为由碧口群等组成的俯冲板片的变质脱水熔融作用导致了阳山金矿带花岗斑岩的形成。因此,阳山金矿带的花岗斑岩是扬子与华北大陆中生代碰撞造山过程中形成的同碰撞花岗岩类。 最新的S,Sr和Pb同位素研究表明:热液成矿早阶段的黄铁矿的34S值范围介于-15.5‰~6.59‰之间,总体离散性比较大,显示沉积地层来源的特征,硫同位素组成属离散型,不具有岩浆主导的成矿的塔式效应。花岗岩中黄铁矿硫同位素范围很集中,34S值处于-1.47‰~2.12‰之间,本区花岗斑岩不可能为成矿物质的主要来源。矿石硫化物的初始锶同位素比值范围较大(0.70877~0.71697,平均为0.71258),显示成矿物质并非单一来源,考虑到花岗斑岩先于矿床形成,只在后期构造作用的岩体部分成矿的地质事实,少量矿石中的低锶同位素比值黄铁矿有可能来自作为围岩的花岗斑岩,也可能来自基底物质。矿石硫化物Pb同位素206Pb/204Pb=17.552~18.853,平均18.260;207Pb/204Pb=15.574~15.928,平均15.685;208Pb/204Pb=37.894~39.293,平均38.680,变化范围比较大。μ=9.46~10.06,平均为9.65,ω值介于36.96~42.21,显示了铅源的物质成熟度较高,要求最佳物源是浅变质化学-碎屑沉积建造,恰好与本区泥盆构造层为浅变质细碎屑岩夹薄层灰岩系的特征一致,部分低Sr和Pb同位素比值的成矿物质可能来自于作为围岩的花岗斑岩和/或者基地物质。 总结前人阳山金矿床的H-O-C同位素体系的研究得出,初始成矿流体来源于碳酸盐地层或相似岩石建造的变质或/和改造脱水,成矿流体系统从早到晚、从深到浅,由变质热液演变为大气降水热液。与本文得出的结论一致。 总而言之, 阳山金矿矿成矿流体的来源早期具有变质水特征,应来自赋矿地层或相似岩性组合的改造或变质脱水作用,晚阶段大气水为主的流体性质。成矿物质主要来自于赋矿围岩。流体经过作为部分围岩的花岗斑岩时从中萃取少部分成矿物质,而导致了少部分的低锶、铅同位素的矿石硫化物组成。 在中生代扬子板块北缘(包括碧口地块)向南秦岭陆陆碰撞过程中,扬子北缘板片沿勉略断裂向北俯冲到南秦岭之下,下插板片增温增压,发生变质、脱水和部分熔融。碰撞中期,构造背景由挤压向伸展转变,减压增温的环境导致大量变质流体沿深大断裂向上运移,不断萃取围岩中大量成矿元素,并将成矿元素搬运至有利于流体聚集、成矿物质卸载的空间,使成矿物质富集成矿。阳山金矿床定位于泥盆系构造层中,成矿时代为190Ma左右,紧随花岗斑岩侵入作用(220Ma左右),主成矿作用发生于碰撞作用由挤压-伸展转变期的减压增温环境。成岩、成矿模式与CMF模式吻合。 阳山超大型金矿是世界罕见的碰撞造山带内类卡林型金矿床,其地质地球化学特征复杂、独特,流体性质主要与造山型金矿一致,矿床地质主要与卡林型金矿一致,部分特征兼与造山型和卡林型两类矿床之间,花岗斑岩本身成矿的特点又为阳山所特有,总体具有造山型向卡林型金矿过渡的性质。因此建议以“秦岭式”或“阳山式”类卡林型金矿床代表与阳山金矿具有类似成矿背景及地球化学性质的矿床。