112 resultados para fuel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Layer-by-layer (LBL) self-assembly is a simple and elegant method of constructing organic-inorganic composite thin films from environmentally benign aqueous solutions. In this paper, we utilize this method to develop proton-exchange membranes for fuel cells. The multilayer film is constructed onto the surface of sulfonated poly(arylene ether ketone) (SPAEK-COOH) membrane by LBL self-assembly of polycation chitosan (CTS) and negatively charged inorganic particle phosphotungstic acid (VIA). The highly conductive inorganic nanoparticles ensure SPAEK-COOH-(CTS/PTA)(n) membranes to maintain high proton conductivity values up to 0.086 S cm(-1) at 25 degrees C and 0.24S cm(-1) at 80 degrees C, which are superior than previous LBL assembled electrolyte systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A prominent methanol-tolerant characteristic of the PtCeOx/C electrocatalyst was found during oxygen reduction reaction process. The carbon-supported platinum modified with cerium oxide (PtCeOx/C) as cathode electrocatalyst for direct methanol fuel cells was prepared via a simple and effective route. The synthesized electrocatalysts were characterized by X-ray diffraction and transmission electron microscopy. It was found that the cerium oxide within PtCeOx/C present in an amorphous form on the carbon support surface and the PtCeOx/C possesses almost similar disordered morphological structure and slightly smaller particle size compared with the unmodified Pt/C catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The PtRu/C electrocatalyst with high loading (PtRu of 60 wt%) was prepared by synergetic effect of ultrasonic radiation and mechanical stirring. Physicochemical characterizations show that the size of PtRu particles of as-prepared PtRu/C catalyst is only several nanometers (2-4 nm), and the PtRu nanoparticles were homogeneously dispersed on carbon surface. Electrochemistry and single passive direct methanol fuel cell (DMFC) tests indicate that the as-prepared PtRu/C electrocatalyst possessed larger electrochemical active surface (EAS) area and enhanced electrocatalytic activity for methanol oxidation reaction (MOR). The enhancement could be attributed to the synergetic effect of ultrasound radiation and mechanical stirring, which can avoid excess concentration of partial solution and provide a uniform environment for the nucleation and growth of metal particles simultaneously hindering the agglomeration of PtRu particles on carbon surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As inorganic proton conductors. phosphomolybdic acid (PMA), phosphotungstic acid (PWA) and silicotungstic acid (SiWA) are extremely attractive for proton-conducting composite membranes. An interesting phenomenon has been found in our previous experiments that the mixing of chitosan (CS) solution and different heteropolyacids (HPAs) leads to strong electrostatic interaction to form insoluble complexes. These complexes in the form of membrane (CS/PMA, CS/PWA and CS/SiWA composite membranes) have been prepared and evaluated as novel proton-conducting membranes for direct methanol fuel cells. Therefore, HPAs can be immobilized within the membranes through electrostatic interaction, which overcomes the leakage problem from membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have synthesized a porous co-polyimide film by coagulating a polyimide precursor in the non-solvent and thermal imidization. Factors affecting the morphology, pore size, porosity, and mechanical strength of the film were discussed. The porous polyimide matrix consists of a porous top layer and a spongy sub-structure with micropores. It is used as a porous matrix to construct sulfonated poly(styrene-ran-ethylene) (SPSE) infiltrated composite membrane for direct methanol fuel cell (DMFC) application. Due to the complete inertness to methanol and the very high mechanical strength of the polyimide matrix, the swelling of the composite membrane is greatly suppressed and the methanol crossover is also significantly reduced, while high proton conductivity is still maintained. Because of its higher proton conductivity and less methanol permeability, single fuel cell performance test demonstrated that this composite membrane outperformed Nafion membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyelectrolyte complexes (PECs) of chitosan and phosphotungstic acid have been prepared and evaluated as novel proton-conducting membranes for direct methanol fuel cells. Phosphotungstic acid can be fixed within PECs membranes through strong electrostatic interactions, which avoids the decrease of conductivity caused by the dissolving of phosphotungstic acid as previously reported. Scanning electron microscopy (SEM) shows that the PECs membranes are homogeneous and dense. Fourier transform infrared spectroscopy (FTIR) demonstrates that hydrogen bonding is formed between chitosan and phosphotungstic acid. Thermogravimetric analysis (TGA) shows that the PECs membranes have good thermal stability up to 210 degrees C. The PECs membranes exhibit good swelling properties and low methanol permeability (P, 3.3 x 10(-7) cm(2) s(-1)). Proton conductivity (sigma) of the PECs membranes increases at elevated temperature, reaching the value of 0.024 S cm(-1) at 80 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface-modified Nafion (R) membrane was prepared by casting proton-conducting polyelectrolyte complexes on the surface of Nafion (R). The casting layer is homogeneous and its thickness is about 900 nm. The proton conductivity of modified Nafion (R) is slightly lower than that of plain Nafion (R); however, its methanol permeability is 41% lower than that of plain Nafion (R). The single cells with modified Nafion (R) exhibit higher open circuit voltage (OCV = 0.73 V) and maximal power density (P-max = 58 mW cm(-2)) than the single cells with plain Nafion (R) (OCV = 0.67 V, P x = 49 mW cm-2). It is a simple, efficient, cost-effective approach to modifying Nafion (R) by casting proton-conducting materials on the surface of Nafion (R).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The controllable synthesis of nanosized carbon-supported Pd catalysts through a surface replacement reaction (SRR) method is reported in this paper. Depending on the synthesis conditions the Pd can be formed on Co nanoparticles surface in hollow nanospheres or nanoparticles structures. Citrate anion acts as a stabilizer for the nanostructures, and protonation of the third carboxyl anion and hence the nanostructure and size of the resulting catalysts are controlled via the pH of the synthesis solution. Pd hollow nanospheres, containing smaller Pd nanoparticles, supported on carbon are formed under the condition of pH 9 reaction solution. Meanwhile, highly dispersed carbon-supported Pd nanoparticles can be formed with higher pH (pH >= 10). All catalysts prepared through the SRR method show enhanced activities for the HCOOH electro-oxidation reaction compared to catalysts reduced by NaBH4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel sulfonated diamine monomer, 2,2'-bis(p-aminophenoxy)-1,1'-binaphthyl-6,6'-disulfonic acid (BNDADS), was synthesized. A series of sulfonated polyimide copolymers containing 30-80 mol % BNDADS as a hydrophilic component were prepared. The copolymers showed excellent solubility and good film-forming capability. Atomic force microscopy phase images clearly showed hydrophilic/hydrophobic microphase separation. The relationship between the proton conductivity and degree of sulfonation was examined. The sulfonated polyimide copolymer with 60 mol % BNDADS showed higher proton conductivity (0.0945-0.161 S/cm) at 20-80 degrees C in liquid water. The membranes exhibited methanol permeability from 9 x 10(-8) to 5 X 10(-7) cm(2)/s at 20 degrees C, which was much lower than that of Nafion (2 x 10(-6) cm(2)/s). The copolymers were thermally stable up to 300 degrees C. The sulfonated polyimide copolymers with 30-60 mol % BNDADS showed reasonable mechanical strength; for example, the maximum tensile strength at break of the sulfonated polyimide copolymer with 40 mol % BNDADS was 80.6 MPa under high moisture conditions. The optimum concentration of BNDADS was found to be 60 mol % from the viewpoint of proton conductivity, methanol permeability, and membrane stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, it is reported for the first time that a carbon-supported Au (Au/C) catalyst for the cathodic catalyst in a direct formic acid fuel cell (DFAFC) was prepared using a polyvinyl alcohol (PVA) protection method. The results indicated that for oxygen reduction, the electrocatalytic activity of the Au/C catalyst prepared with the PVA protection method is much better than that of a Au/C catalyst prepared with the pre-precipitation method. This is due to the small average size and low relative crystallinity of the An particles in the Au/C catalyst prepared by the PVA protection method, compared to that of the Au/C catalyst prepared by the pre-precipitation method, illustrating that the average size and the relative crystallinity of the ALL particles has an effect on the electrocatalytic activity of the Au/C catalyst for oxygen reduction. In addition, because An has no electrocatalytic activity for the oxidation of formic acid, the Au/C catalyst possesses a high formic acid tolerance. After the electrocatalytic activity of the Au/C catalyst for the oxygen reduction is improved, it is suitable to be used as the cathodic catalyst in DFAFC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method was developed to prepare the highly active Pt-Ru-P/C catalyst. The deposition of phosphorus significantly increased electrochemical active surface (EAS) area of catalyst by reduces Pt-Ru particle size. TEM images show that Pt-Ru-P nanoparticles have an uniform size distribution with an average diameter of 2 nm. Cyclic voltammetry (CV), Chronoamperometry (CA), and CO stripping indicate that the presence of non-metal phosphorus as an interstitial species Pt-Ru-P/C catalyst shows high activity for the electro-oxidation of methanol, and exhibit enhanced performance in the oxidation of carbon monoxide compared with Pt-Ru/C catalyst. At 30 degrees C and pure oxygen was fed to the cathode, the maximum power density of direct methanol fuel cell (DMFC) with Pt-Ru-P/C and Pt-Ru/C catalysts as anode catalysts was 61.5 mW cm(-2) and 36.6 mW cm(-2), respectively. All experimental results indicate that Pt-Ru-P/C catalyst was the optimum anode catalyst for direct methanol fuel cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new flow field was designed to search flow fields fitting polymer electrolyte membrane fuel cells (PEMFCs) better due its extensible. There are many independent inlets and outlets in the new flow field. The new flow field we named NINO can extend to be more general when pressures at the inlet and outlet vary and some usual flow fields will be obtained. A new mathematical model whose view angle is obverse is used to describe the flow field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, it is reported for the first time that a carbon-supported Pd-P (Pd-P/C) catalyst for the anodic catalyst in the direct formic acid fuel cell (DFAFC) can be prepared. The Pd-P/C catalyst shows that its electrocatalytic activity and especially its stability for the oxidation of formic acid are much higher than that of a Pd/C catalyst. Therefore, the Pd-P/C catalyst may have practical applications in DFAFCs.