125 resultados para fluidic devices
Resumo:
In this contribution we report the research and development of 1.55 mu m InGaAsP/InP gain-coupled DFB laser with an improved injection-carrier induced grating and of high performance 1.3 mu m and 1.55 mu m InGaAsP/InP FP and DFB lasers for communications. Long wavelength strained MQW laser diodes with a very low threshold current (7-10 mA) have been fabricated. Low pressure MOVPE technology has been employed for the preparation of the layered structure. A novel gain-coupled DFB laser structure with an improved injection-carrier modulated grating has been proposed and fabricated. The laser structures have been prepared by hybrid growth of MOVPE and LPE techniques and reasonably good characteristics have been achieved for resultant lasers. High performance 1.3 mu m and 1.55 mu m InGaAsP/InP DFB lasers have successfully been developed for CATV and trunk line optical fiber communication.
Resumo:
The semiconductor photonics and optoelectronics which have a great significance in the development of advanced high technology of information systems will be discussed in this paper. The emphasis will be put on the recent research carried out in our laboratory in enhanced luminescence from low dimensional materials such as SiGe/Si and Er-doped Si-rich SiO2/Si and Er-doped SixNy/Si. A ring shape waveguide structure, used to promote the effective absorption coefficient in PIN photodetector for 1.3 mu m wavelength and a resonant cavity enhanced structure, used to improve the quantum efficiency and response in heterostructure photo-transistor (HPT), are also proposed in this paper.
Resumo:
This paper presents an introduction to the application of ion traps and storage devices for cluster physics. Some experiments involving cluster ions in trapping devices such as Penning traps, Paul traps, quadrupole or multipole linear traps are briefly discussed. Electrostatic ion storage rings and traps which allow for the storage of fast ion beams without mass limitation are presented as well. We also report on the recently developed mini-ring, a compact electrostatic ion storage ring for cluster, molecular and biomolecular ion studies.
Resumo:
Synthesis of segmented all-Pt nanowires is achieved by a template-assisted method. The combination of a suitably chosen electrolyte/template system with pulse-reverse electrodeposition allows the formation of well-defined segments linked to nanowires. Manipulation of the morphology is obtained by controlling the electrokinetie effects on the local electrolyte distribution inside the nanochannels during the nanowire growth process, allowing a deviation from the continuously cylindrical geometry given by the nanoporous template. The length of the segments can be adjusted as a function of the cathodic pulse duration. Applying constant pulses leads to segments with homogeneous shape and dimensions along most of the total wire length. X-ray diffraction demonstrates that the preferred crystallite orientation of the polycrystalline wires varies with the average segment length. The results are explained considering transitions in texture formation with increasing thickness of the electrodeposit. A mechanism of segment formation is proposed based on structural characterizations. Nanowires with controlled segmented morphology are of great technological importance, because of the possibility to precisely control their substructure as a means of tuning their electrical, thermal, and optical properties. The concept we present in this work for electrodeposited platinum and track-etched polycarbonate membranes can be applied to other selected materials as well as templates and constitutes a general method to controlled nanostructuring and synthesis of shape controlled nanostructures.
Resumo:
DNA diagnosis is experiencing an impressive progression towards the development of novel technology to identity various clinically relevant categories of genetic changes and to meet the exponential growth of genomics. The introduction of capillary electrophoresis has dramatically accelerated the completion of the first draft of the human DNA sequence in the Human Genome Project, and thus, has become the method of choice for analysis of various genetic variants. The recent development of microfabricated electrophoretic devices has led to the possibility of integrating multiple sample handling with the actual measurement steps required for automation of molecular diagnostics. This review highlights the most recent progress in capillary electrophoresis and electrophoretic microdevices for DNA-based diagnostics, including the important areas of genotyping for point mutation, single nucleotide polymorphisms, short tandem repeats and organism identification. The application of these techniques for infectious and genetic disease diagnosis, as well as forensic identification purpose, are covered. The promising development and the challenges for techinical problems are also discussed.
Resumo:
City Univ Hong Kong
Resumo:
A bipolar transport compound, 2,5-bis(4-(9-(2-ethylhexyl)-9H-carbazol-3-yl) phenyl)-1,3,4-oxadiazole (CzOXD), incorporating both electron-and hole-transport functionalities, was synthesized and fully characterized by H-1 NMR, C-13 NMR, elemental analysis and mass spectrometry. Its thermal, electrochemical, electronic absorption and photoluminescent properties were studied
Resumo:
With the goal to provide organometallic triplet emitters with good hole-injection/hole-transporting properties, highly amorphous character for simple solution-processed organic light-emitting diodes, and negligible triplet-triplet (T-T) annihilation, a series of new phosphorescent cyclometalated Ir-III and Pt-II complexes with triphenylamine-anchored fluorenylpyridine dendritic ligands were synthesized and characterized. The photophysical, thermal, electrochemical and electroluminescent properties of these molecules are reported.
Resumo:
A series of cross-linkable aromatic amines has been synthesized by the multi-step synthetic rout. Full characterization of their structure by H-1 NMR-, IR- and mass spectrometry is presented. The synthesized materials were examined by various techniques including differential scanning calorimetry, thermogravimetry, UV and electron photoemission spectrometry.
Resumo:
Characteristics of white organic light-emitting devices based on phosphor sensitized fluorescence are improved by using a multiple-emissive-layer structure, in which a phosphorescent blue emissive layer is sandwiched between red and green&yellow ones. In this device, bis[(4,6-difluorophenyl)-pyridinato-N,C-2] (picolinato), bis(2,4-diphenyl-quinoline) iridium (III) acetylanetonate, fac bis (2-phenylpyridine) iridium, and 5,6,11,12-tetraphenylnaphthacene are used as blue, red, green, and yellow emitters, respectively.
Resumo:
A promising method for assembling carbon nanotubes (CNTs) and poly(diallyldimethylammonium chloride) protected Prussian blue nanoparticles (P-PB) to form three-dimensional (3D) nanostructured films is proposed. The electrostatic interaction, combined with layer-by-layer self-assembly (LBL), between negatively charged CNTs and positively charged P-PB is strong enough to drive the formation of the 3D nanostructured films. Thus, prepared multilayer films were characterized by ultraviolet-visible-near-infrared spectroscopy (UV-vis-NIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV).
Resumo:
Low crystalline order has been proved to be one of the main hindrances for achieving high performance devices based on thin films composed of crystallizable polymer. In this work, we use a facile method to substantially improve crystallinity of poly(3-hexylthiophene) (P3HT) in its pure or composite film via the construction of ordered precursors in the solution used for thin film deposition. These improvements have been confirmed by bright-field transmission electron micrography, electron diffraction, UV-Vis absorption and wide-angle X-ray diffraction.
Resumo:
A nonvolatile write-once-read-many-time (WORM-time) memory device based on poly(N-vinylcarbazole) (PVK) films was realized by thermally annealing. The device can be fabricated using a simple spin coat method. It was found that the control of PVK film surface morphology by thermally annealing plays an important role in achieving the WORM memory properties. The memory device showed an ON/OFF current ratio as high as 10(4) and the retention time was over 2000 s without degradation.
Resumo:
We realized write-once-read-many-times (WORM) memory devices based on pentacene and demonstrated that the morphology control of the vacuum deposited pentacene thin film is greatly important for achieving the unique nonvolatile memory properties. The resulted memory devices show a high ON/OFF current ratio (10(4)), long retention time (over 12 h), and good storage stability (over 240 h). The reduction of the barrier height caused by a large interface dipole and the damage of the interface dipole under a critical bias voltage have been used to explain the transition processes.