91 resultados para dynamic initiation of crack
Resumo:
A quasi-thermodynamic model of metalorganic vapor phase epitaxy (MOVPE) growth of GaxAlyIn1-x-yN alloys has been proposed. In view of the complex growth behavior of GaxAlyIn1-x-yN, we focus our attention on the galliumrich quaternary alloys that are lattice matched to GaN, In0.15Ga0.85N or Al0.15Ga0.85N, which are widely used in the GaN-based optoelectronic devices. The relationship between GaAlInN alloy composition and input molar ratio of group III metalorganic compounds at various growth conditions has been calculated. The influence of growth temperature, nitrogen fraction in the carrier gas, input partial pressure of group III metalorganics, reactor pressure, V/III ratio and the decomposition rate of ammonia on the composition of deposited alloys are studied systematically. Based on these calculated results, we can find out the appropriate growth conditions for the MOVPE growth of GaxAlyIn1-x-yN alloy lattice matched to GaN, In0.15Ga0.85N or Al0.15Ga0.85N. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The dynamic process of light illumination of GaAs is studied numerically in this paper to understand the photoquenching characteristics of the material. This peculiar behavior of GaAs is usally ascribed to the existence of EL2 states and their photodriven metastable states. To understand the conductivity quenching, we have introduced nonlinear terms describing the recombination of the nonequilibrium free electrons and holes into the calculation. Though some photoquenching such as photocapacitance, infrared absorption, and electron-paramagnetic-resonance quenching can be explained qualitatively by only considering the internal transfer between the EL2 state and its metastability, it is essential to take the recombination into consideration for a clear understanding of the photoquenching process. The numerical results and approximate analytical approach are presented in this paper for the first time to our knowledge. The calculation gives quite a reasonable explanation for n-type semiconducting GaAs to have infrared absorption quenching while lacking photoconductance quenching. Also, the calculation results have allowed us to interpret the enhanced photoconductance phenomenon following the conductance quenching in typical semi-insulating GaAs and have shown the expected thermal recovery temperature of about 120 K. The numerical results are in agreement with the reported experiments and have diminished some ambiguities in previous works.
Resumo:
The initiation of pipeline spanning involves the coupling between the flow over the pipeline and the seepage-flow in the soil underneath the pipeline. The pipeline spanning initiation is experimentally observed and discussed in this article. It is qualitatively indicated that the pressure-drop induced soil seepage failure is the predominant cause for pipeline spanning initiation. A flow-pipe-seepage sequential coupling Finite Element Method (FEM) model is proposed to simulate the coupling between the water flow-field and the soil seepage-field. A critical hydraulic gradient is obtained for oblique seepage failure of the sand in the direction tangent to the pipe. Parametric study is performed to investigate the effects of inflow velocity, pipe embedment on the pressure-drop, and the effects of soil internal friction angle and pipe embedment-to-diameter ratio on the critical flow velocity for pipeline spanning initiation. It is indicated that the dimensionless critical flow velocity changes approximately linearly with the soil internal friction angle for the submarine pipeline partially-embedded in a sandy seabed.
Resumo:
The slender axis-symmetric submarine body moving in the vertical plane is the object of our investigation. A coupling model is developed where displacements of a solid body as a Euler beam (consisting of rigid motions and elastic deformations) and fluid pressures are employed as basic independent variables, including the interaction between hydrodynamic forces and structure dynamic forces. Firstly the hydrodynamic forces, depending on and conversely influencing body motions, are taken into account as the governing equations. The expressions of fluid pressure are derived based on the potential theory. The characteristics of fluid pressure, including its components, distribution and effect on structure dynamics, are analyzed. Then the coupling model is solved numerically by means of a finite element method (FEM). This avoids the complicacy, combining CFD (fluid) and FEM (structure), of direct numerical simulation, and allows the body with a non-strict ideal shape so as to be more suitable for practical engineering. An illustrative example is given in which the hydroelastic dynamic characteristics, natural frequencies and modes of a submarine body are analyzed and compared with experimental results. Satisfactory agreement is observed and the model presented in this paper is shown to be valid.
Resumo:
The static and dynamic properties of polymer chains in athermal solvents with different sizes are studied by molecular dynamics method. With increasing solvent size, the radius of gyration and the diffusion coefficient of the polymer decay fast until a critical solvent size is reached. For the polymer diffusion coefficients, this decay only depends on the solvent size; while for the radius of gyration of polymers, this decay depends on both solvent size and the length of the polymers. The increase of solvent size also makes the polymer tend to be thicker ellipsoid until a critical solvent size is reached. The static scaling exponent of the polymer also shows the solvent size dependence. Moreover, four regions are identified where the polymers show different dynamic behaviors according to the dynamic structure factors of the polymer.
Resumo:
The replacement of coronene monolayer on Au (111) by 6-mercapto-1-hexanol (MHO) was studied by in situ scanning tunneling microscopy (STM) in solutions. It was found that the rate of replacement depends strongly on the concentration of MHO. The replacement finished within a second at a higher concentration of MHO. At a lower concentration, the slow replacement could be followed by in situ STM. The replacement occurred initially near the elbow position of reconstructed Au (111) with the formation of pits in a single or several missing molecules. With the proceeding of replacement, these small pits expanded, and the surrounding coronene molecules were gradually substituted by MHO, which developed into ordered domains within a spatial confined environment. Meanwhile, the reconstruction of Au (111) was lifted. The replacement expanded fast along the reconstruction lines in the domain. For the fast replacement, a (root 3 x root 3) R30 degrees adlattice was observed, while a c(4 x 2) superlattice was observed for the slow replacement.
Resumo:
The influence of molecular topology on the structural and dynamic properties of polymer chain in solution with ring structure, three-arm branched structure, and linear structure are studied by molecular dynamics simulation. At the same degree of polymerization (N), the ring-shaped chain possesses the smallest size and largest diffusion coefficient. With increasing N, the difference of the radii of gyration between the three types of polymer chains increases, whereas the difference of the diffusion coefficients among them decreases. However, the influence of the molecular topology on the static and the dynamic scaling exponents is small. The static scaling exponents decrease slightly, and the dynamic scaling exponents increase slightly, when the topology of the polymer chain is changed from linear to ring-shaped or three-arm branched architecture. The dynamics of these three types of polymer chain in solution is Zimm-like according to the dynamic scaling exponents and the dynamic structure factors.
Resumo:
Microstructure and some dynamic performances of Ti0.17Zr0.08V0.34RE0.01Cr0.1Ni0.3 (RE=Ce, Dy) hydrogen storage electrode alloys have been investigated using XRD, FESEM-EDS, ICP-MS and EIS measurements. The alloy is composed of V-based solid solution phase with a dendritic shape and a continuous C14 Laves phase with a network shape surrounding the dendrite. Pressure-composition isotherm curves indicate that the alloy with Dy addition has a lower equilibrium hydrogen pressure and a wider plateau region. The alloy electrode with Dy addition has higher discharge capacity, while the alloy electrode with Ce addition has better activation and higher cycle stability. The alloy electrode with Ce addition has better electrochemical activity with higher exchange current density (127.5 mA g(-1)), lower charge transfer resistance (1.37 Omega) and lower apparent activation energy (30.5 kJ mol(-1)). The capacity degradation behavior for the alloy electrode is attributed to two main factors: one is the dissolutions of V and Zr element to KOH solution, and another is the larger charge transfer resistance which increases with increasing cycle number.
Resumo:
The dynamic states of cytochrome c multilayers on electrochemically pretreated highly oriented pyrolytic graphite (HOPG) have been studied by in-situ scanning tunnelling microscopy (STM) under potential control of both the tip and the substrate in cytochrome c and phosphate buffer solution. The dynamic characterization of cytochrome c multilayers and relatively stable adsorbed single cytochrome c molecules scattered on HOPG imply that physically adsorbed multilayers were more easily influenced by the STM tip than those of chemically adsorbed single molecules. In-situ STM images of chemically adsorbed cytochrome c molecules with discernible internal structures on HOPG revealed that morphologies of cytochrome c molecules also suffered tip influence; possible tip-sample-substrate interactions have been discussed.
Resumo:
The dynamics of phase separation in a binary polymer blend of poly(vinyl acetate) with poly(methyl methacrylate) was investigated by using a time-resolved light-scattering technique. In the later stages of spinodal decomposition, a simple dynamic scaling law was found for the scattering function S(q, t)(S(q, t) approximately I(q, t)): S(q, t)q(m)-3 S approximately (q/q(m)). The scaling function determined experimentally was in good agreement with that predicted by Furukawa, S approximately (X) approximately X2/(3 + X8) for critical concentration, and approximately in agreement with that predicted by Furukawa, S approximately (X) approximately X2/(3 + X6) for non-critical mixtures. The light-scattering invariant shows that the later stages of the spinodal decomposition were undergoing domain ripening.
Resumo:
The dynamic process of the ionic valence changing from Eu~(2+) to Eu~(3+) in EuF_2 at high temperature has been investigated by ESCA, high,temperature X-ray diffraction, high temperature spectrum, high temperature magnetic Isusceptibility and Mssbauer spectrum. It has been shown that the formed Eu~(3+) exists in different compounds when EuF_2 is heated to high temperature in different atmospheres. In air, Eu~(3+) exists in the form of hexagonal EuOF, in nitrogen, in the form of orthogonal EuF_3 and non-hexa...