110 resultados para copper(II) and cobalt(II) complexes
Resumo:
A series of novel, long-chain-substituted, porphyrin derivatives, meso-tetra (4-alkylamidophenyl) porphyrin ligands and their Zn complexes (alkyl = 8,10,12,14,16,18) were prepared by acylation of the amino groups of 5,10,15,20-tetra(4-aminophenyl)porphyrin by alkyl chloride. Mesomorphism was investigated by DSC, polarized optical microscopy (POM) and X-ray diffraction (XRD). Only ligands containing chains > 12 carbon atoms displayed liquid crystalline behaviour, which exhibited a high phase transition temperature and a broad mesophase temperature span, Zn complexes showed no liquid crystalline behaviour. Cyclic voltammetry, luminescence spectra and surface photovoltage spectroscopy revealed that covalent linking of an alkylamido group to the tetraphenylporphyrin molecule influences, significantly, the properties of the porphyrin macrocycle.
Resumo:
The multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode exhibited electrocatalytic activity to the reduction of oxygen in 0.1 M HAc-NaAc (pH 3.8) buffer solution. Further modification with cobalt porphyrin film on the MWNTs by adsorption, the resulted modified electrode showed more efficient catalytic activity to O-2 reduction. The reduction peak potential of O-2 is shifted much more positively to 0.12 V (vs. Ag/AgCl), and the peak current is increased greatly. Cyclic voltammetry (CV), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), were used to characterize the material and the modified film on electrode surface. Electrochemical experiments gave the total number of electron transfer for oxygen reduction as about 3, which indicated a co-exist process of 2 electrons and 4 electrons for reduction of oxygen at this modified electrode. Meanwhile, the catalytic activities of the multilayer film (MVVNTs/CoTMPyP)(n) prepared by layer-by-layer method were investigated, and the results showed that the peak current of O-2 reduction increased and the peak potential shifted to a positive direction with the increase of layer numbers.
Resumo:
Electronic structures of the heterojunction between copper phthalocyanine (CuPc) and copper hexadecafluorophthalocyanine (F16CuPc) were studied with ultraviolet photoemission spectroscopy. Band bending and an interface dipole were observed at the interface due to the formation of an electron accumulation layer and a depletion layer in F16CuPc and CuPc, respectively. Such an energy level alignment leads to interesting ambipolar characteristics for application of the CuPc/F16CuPc junction in organic field-effect transistors.
Resumo:
Three compounds of metalloporphyrins were studied using electrospray ionization mass spectrometry. The bonding power between substitutional phenyl and porphyrin cycle and the coordinate conditions of metalloporphyrins with imidazole were discussed. The experimental result indicated that the bonding power between substitutional phenyl and porphyrin cycle in metalloporphyrins became weak from Mn, Fe to Co. The complexes abundances formed by metallophorphyrin with imidazole were stronger with the increase of the ligand concentration. At the same ligand concentration, the abundance of the complexes was intensified gradually and the stability of the ligands was become stronger from Mn, Fe to Co.
Resumo:
Never di- and trinuclear Rh complexes, [Rh-2(PPh3)(4)(H)(4)(Me2CO)(2)(mu -pyz)](ClO4)(2). EtOH and [Rh-3(PPh3),(mu -pyz)(3)](ClO4)(3). EtOH were selectively isolated from the reaction of [Rh(PPh3)(2)(H)(2)(Me2Co)(EtOH)]ClO4 with pyrazine (pyz) in Me2CO and THF, respectively. Their structures were crystallographically characterized.
Resumo:
Half-sandwich nitrosyl complexes Cp*M(NO)I-2 (M = Mo, or W) react with dithiocarbamates (NaS2CNMe2 and NaS2CNEt2) in THF to form of complexes: Cp*Mo(NO)I (S2CNMe2) (1), Cp*Mo(NO)I(S2CNEt2) (2), Cp*W(NO)I(S2CNMe2) (3) and Cp*W(NO)I(S2CNEt2) (4) in high yields. Treatments of Cp*M(NO)I-2 (M = Mo, W) or [CpMo(NO)I-2](2) with phosphinodithioate (NaS2PMe2) and phosphorodithioate [(NH4)S2P(OMe)(2)] result in complexes: Cp*Mo(NO)I(S2PMe2) (5a), CpMo(NO)I (S2PMe2) (5b), Cp*Mo(NO)(S2PMe2)(2) (6a), CpMo (NO) (S2PMe2)(2) (6b) and Cp*Mo(NO)I[S2P(OMe)(2)] (7), Cp*W(NO)I(S2PMe2) (8), Cp*W(NO) I[S2P(OMe)](2) (9). Treatment of (5a) and (5b) with an excess of NaS2PMe2 gives (6a) and (6b). The complexes have been characterized by their elemental analyses, i.r., H-1, C-13-n.m.r. and by EI-MS spectrometry.
Resumo:
Four novel polymeric lanthanide(III) complexes of two new double betaine derivatives have been synthesized and structurally determined. In [{La-2(L-1)(2)(H2O)(9)}(n)]Cl-6n. 2nH(2)O (1) and [{Tb(L-1)(H2O)(4)}(n)]Cl-3n. nH(2)O (2) (L-1 =4,4'-trimethylenedipyridinio-N,N'-diacetate), the lanthanide(III) ions form a two-dimensional layer in which each pair of lanthanide(III) ions is bridged by two syn-anti mu-carboxylato-O,O' groups. Adjacent layers are cross-linked through hydrogen bonds among aqua ligands, lattice water molecules and chloride ions, to form a three-dimensional network. Isomorphous [{Ln(L-1)(H2O)(4)}(n)]Cl-3n. 5nH(2)O (Ln=La, 3; Ln=Tb, 4; L-2=1,3 bis(pyridinio-4-carboxylato)-propane) each contain a centrosymmetric paddle-wheel-like dimeric unit in which each pair of adjacent metal atoms is bridged by four syn-syn mu-carboxylato-O,O' groups that are oriented nearly perpendicular to each other about the metal-metal axis. Neighboring dimeric subunits are bridged by a pair of flexible LL ligands into a polymeric chain. Adjacent chains are inter-linked by hydrogen bonds among aqua ligands, lattice water molecules and chloride ions into a three-dimensional network. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Mixed Langmuir-Blodgett films of tri-(2,4-di-t-amylphenoxy)-(8-quinolinolyl) copper phthalocyanine and water-soluble fullerenols are prepared. Their behavior at the air-water interface and the monolayer morphology are studied. (C) 1998 Elsevier Science Limited. All rights reserved.
Resumo:
Iron phenanthroline - and 8 - hydroxyquinoline complexes /Y zeolite, denoted a FePhen/Y and FeOx/Y respectively, were prepared; The formation of the metal complexes mentioned above within the cages of Y zeolite and their crystal structures were determined by elemental analyses, diffuse reflectance UV-Vis,SEM,BET,and XRD methods; The influence of experimental parameters upon phenol conversion and product selectivities were investigated as well.
Resumo:
Dinuclear complexes [Mo-2(mu-pyS)(2)(CO)(4)(PPh(3))(2)] (1), [Mo-2(mu-pyS)(2)(CO)(5)(PPh(3))] (2) and a trace quality of trinuclear complex [Mo-3(mu-pyS)(2)(mu(3)-pyS)(2)(CO)(6)] (3) were obtained from the reaction of [Mo(CO)(3)(MeCN)(3)] with pyridine-2-thione (pySH) and PPh(3) in THF. The crystal structures of 1.2C(7)H(8) and 3.7 C7H8 have been determined by X-ray diffraction studies. Crystals of 1.2C(7)H(8) are monoclinic, space group C2/c and Z = 4, with a = 18.797(3), b = 11.143(4), c = 28.157(7) Angstrom, beta = 101.23(2)degrees. The structure was refined to R = 0.050 and Rw = 0.057 for 3146 observed reflections, Crystals of 3.7 C7H8 are monoclinic, space group P2(1)/a and Z = 4, with a = 13.912(2), b = 17.161(2), c = 15.577(3) Angstrom, beta = 101.17(1)degrees. The structure was refined to R = 0.046 and Rw = 0.051 for 4357 observed reflections. The molecule of 1 consists of two Mo(CO)(2)(PPh(3)) fragments linked by an Mo-Mo bond (2.974(2)Angstrom) and by two doubly-bridging pyS ligands. The compound 3 contains a bent open geometry of three molybdenum atoms (Mo(1)-Mo(2)-Mo(3) angle 122.99(3)degrees) linked by two Mo-Mo bonds (2.943(1) and 2.950(1) Angstrom) and by two doubly- and two triply-bridging pyS ligands.
Resumo:
We studied several inclusion complexes of beta-CD by means of molecular mechanical calculation. The inclusion process and the driving force were discussed, and the conclusion on stability agrees with the results of electrochemical experiments.
Resumo:
Dendritic copper nanostructures of different morphologies were synthesized by a surfactant-free electrochemical method. Single crystal nature of the nanostructures was revealed from their X-ray diffraction and electron diffraction patterns. Mechanism of dendrite formation was discussed from thermodynamic aspects using the concept of supersaturation. Supersaturation of the copper metal reduced on the surface of the electrode was the crucial factor for the generation of different morphologies. Effects of applied potential, temperature, and the solution concentration on the supersaturation were studied. The NO3- and H2O2 electroreduction ability of the dendritic materials was tested. Use of copper dendrite-modified electrode as NO3- sensor was demonstrated.