159 resultados para controlled reproduction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlled vertical drying deposition method was used to make high-quality single crystal close-packed colloidal films formed of different radii polystyrene latex spheres on glass substrates coming from a low concentration water suspension (0.1% volume fraction). Regardless of the spheres radii the film thickness was about 6.3 microns. However, cracks destroyed the crystalline film structure during the colloidal film growth. The effect of particle radius (85-215 nm range) on film cracking was systematically studied using in situ optical fracture monitoring. Primary parallel cracks run along the vertical growth direction, later followed by secondary branched cracks in-between the primary cracks due to residual water evaporation. Quantitative theoretical relationship between the cracks spacing and particles radius was derived and shows good agreement with experimental observations. Normalized cracks spacing is related to a reciprocal ratio of the dimensionless particle radius.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

岷江上游干旱河谷区水土流失强烈,地质灾害频繁,生态环境十分脆弱,而土壤条件恶劣(水分不足和养分缺乏)是阻碍该区植被恢复的关键因子,因此研究水分和乡土灌木生长对土壤的影响对该区的生态恢复具有指导意义。本文通过定点模拟实验,选取三种优势豆科灌木为研究对象,分别是白刺花(Sophora davidii)、小马鞍羊蹄甲(Bauhinia faberi var. microphylla)和小雀花(Campylotropics polyantha),设置5 个水分梯度,分别为100%、80%、60%、40%和20%田间持水量(FC),对栽种植物与不种植物下土壤理化性质和酶活性进行测定分析,系统比较和研究了不同水分条件和不同乡土灌木生长对干旱河谷区土壤结构、养分循环、酶活性以及微生物量的影响。主要结果如下:1. 无论生长植物与否,土壤的毛管持水量和毛管孔隙度都随着水分含量的减少而降低,最大持水量、总孔隙度和容重变化不大,相应地,土壤中的非毛管孔隙随含水量的减少而升高。各水分条件下,种植植物的毛管持水量和毛管孔隙度低于无植物生长的土壤,非毛管孔隙度相应地高于无植物土壤。土壤含水量在100%-40% FC 时,三种豆科灌木的毛管持水量和毛管孔隙度存在差异,而20% FC 条件下,三种豆科灌木土壤的物理性质基本相同。2. 水分胁迫影响土壤中养分的矿化和积累,主要表现在降低了水溶性碳和铵态氮的含量,中等程度胁迫时(60% FC)促进了有机碳和硝态氮的富集,对速效钾和有效磷没有明显作用。种植豆科灌木后各水分梯度上都增加了有机碳、铵态氮、速效钾和有效磷的积累。增加程度上三种豆科灌木间有一定差异,对于土壤有机碳总量,种植白刺花和小马鞍羊蹄甲明显高于小雀花,同样的情况还出现在铵态氮和速效钾上,但是对于有效磷,种植小雀花后的增加程度则明显高于白刺花和小马鞍羊蹄甲。种植豆科灌木不仅增加了土壤养分的相对含量,也改变了其在水分梯度上的变化趋势及其变化幅度,这种作用主要体现在碳元素和氮元素上。3. 无植物生长时脲酶活性随水分含量的减少而升高,水分胁迫对磷酸酶和过氧化氢酶的作用不显著,蔗糖酶也保持在相对较高的水平。种植植物后,蔗糖酶、磷酸酶活性与无植物时相比有较大幅度的提高,种植白刺花的脲酶活性也升高,其升高的程度在不同水分含量时不同。种植植物还降低了酶活性在水分梯度上的变幅,使之在水分梯度间的差异显著性降低。脲酶活性在指示土壤性质改变方面是较敏感的指标,其它三种酶在不同植物间的差异不明显。4. 在无植物生长时,中等程度的水分胁迫(60% FC)提高了土壤微生物量碳含量,过高或过低的土壤水分均不利于微生物碳的积累。种植小马鞍羊蹄甲后微生物量碳在水分梯度上的变化趋势与无植物生长时一致,而种植白刺花和小雀花后微生物量碳随着水分含量的减少而降低。不同种类植物的微生物量碳在水分梯度上的变化特征也不同,100% FC 条件下三种植物间没有差异,80%和60% FC 条件下小马鞍羊蹄甲显著高于白刺花和小雀花,40%和20% FC 条件下白刺花和小马鞍羊蹄甲也显著高于小雀花,说明不同种类植物随着干旱胁迫程度的加深微生物量碳的降低幅度不同,在极度干旱时,白刺花和小马鞍羊蹄甲土壤依然保持了较高的微生物活性,而小雀花土壤微生物量则明显下降。The dry valley of the upper reaches of the Minjiang River is seriously degradedmountain ecosystem. It was endangered by extremely soil lost and frequentlygeological disaster. Previous studies showed that short of water and nutrients in soilwas the principal limiting factors of vegetation restoration in this area. The typical soiland three dominant leguminous shrubs Sophora davidii, Bauhinia faberi var.microphylla and Campylotropics polyantha in upper reaches of arid Minjiang Rivervalley were considered as experimental material. Two-month old seedlings of eachspecies were exposed to five water supplies (100%, 80%, 60%, 40% and 20% waterfield capacity (FC)) in a temperature and light-controlled greenhouse. Afterthree-month water treatment, soil physiochemical variables and soil microbialactivities were determined by conventional methods. The main results showed that:1. Soil capillary capacity and capillary porosity decreased along water supplyregimes in all treatments, while saturated water capacity, total porosity and bulkdensity kept in a relatively stable level, as a result, the non-capillary porosity andcapacity increased with decrease of water supply. Compared to non-planted soil, theplant-soil systems had a higher non-capillary porosity and capacity, suggestingappropriate oxygen was present in soil to maintain the living of microorganism. Soilof three type shrub species shared the same capillary capacity and capillary porosityunder 20% FC.2. Water soluble carbon and NH4+-N decreased in response to water stress, whiletotal organic carbon and NO3--N promoted by moderate water stress and inhibited by 100% and 20% FC. Total organic carbon, NH4+-N, rapidly available K and availableP increased after the planting of leguminous shrubs in five water supply regimescompared to non-planted soil. For TOC, NH4+-N and rapidly available K, thepromotion effect was higher in S. davidii and B. faberi var. microphylla than C.polyantha planted soil, while available P displayed the opposite side. The planting ofshrubs also reduced the variance of observed traits along water supply gradients.3. Drought stress increased urease activity in non-planted soil, while insignificantdifferences were observed in phosphatase and catalase activity among five watersupply regimes. The planting of leguminous shrubs facilitated the β-glucosidase andphosphatase activity compared to the non-planted soil. It also reduced the variance ofenzyme activity along water supply gradients. Urease was more sensitive to waterstress than other three enzymes.4. Soil water content significantly affected microbial biomass carbon andCmic:Corg. S. davidii and B. faberi var. microphylla showed more drought toleranceability than C. polyantha, attributing not only to their relatively smaller variance ofmicrobial biomass carbon along soil water supply gradients, but also to the highlevel of microbial activity under severe water stress. S. davidii and B. faberi var.microphylla benefited reproduction of soil microorganism at 60%-80% FC, whilesevere drought limited it due to the competition of water and nutrients between plantand soil microorganism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using electrochemical deposition, Cu nanowire arrays have been successfully fabricated by home-made polycarbonate ion-track templates. The diameters were well controlled by etching time of templates. The minimum diameter is 15 nm. The morphologies and structures were analyzed by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The wires prefer [1 1 0] growth direction due to H ions absorption. The optical properties of Cu nanowire arrays are studied by an ultraviolet/visible/near-infrared spectrophotometer. Two extinction peaks were observed in spectra. The optical mechanism is discussed based on surface plasmon resonance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hallmark of materials science is the ability to tailor the structures of a given material to provide a desired response. In this work, the structures involving crystallinity and crystallographic orientation of Cu nanowires electrochemically fabricated in ion-track templates have been investigated as a function of fabrication condition. Both single crystalline and polycrystalline nanowires were obtained by adjusting applied voltages and temperatures of electrochemical deposition. The anti-Hall-Petch effect was experimentally evidenced in the polycrystalline nanowires. The dominant crystallographic orientations of wires along [111], [100], or [110] directions were obtained by selecting electrochemical deposition conditions, i.e., H2SO4 concentration in electrolyte, applied voltage, and electrodeposition temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of segmented all-Pt nanowires is achieved by a template-assisted method. The combination of a suitably chosen electrolyte/template system with pulse-reverse electrodeposition allows the formation of well-defined segments linked to nanowires. Manipulation of the morphology is obtained by controlling the electrokinetie effects on the local electrolyte distribution inside the nanochannels during the nanowire growth process, allowing a deviation from the continuously cylindrical geometry given by the nanoporous template. The length of the segments can be adjusted as a function of the cathodic pulse duration. Applying constant pulses leads to segments with homogeneous shape and dimensions along most of the total wire length. X-ray diffraction demonstrates that the preferred crystallite orientation of the polycrystalline wires varies with the average segment length. The results are explained considering transitions in texture formation with increasing thickness of the electrodeposit. A mechanism of segment formation is proposed based on structural characterizations. Nanowires with controlled segmented morphology are of great technological importance, because of the possibility to precisely control their substructure as a means of tuning their electrical, thermal, and optical properties. The concept we present in this work for electrodeposited platinum and track-etched polycarbonate membranes can be applied to other selected materials as well as templates and constitutes a general method to controlled nanostructuring and synthesis of shape controlled nanostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum-substituted mesoporous SBA-15 (Al-SBA-15) materials were directly synthesized by a hydrolysis-controlled approach in which the hydrolysis of the silicon precursor (tetraethyl orthosilicate, TEOS) is accelerated by fluoride or by using tetramethyl orthosilicate (TMOS) as silicon precursor rather than TEOS. These materials were characterized by powder X-ray diffraction (XRD), N-2 sorption isotherms, TEM, Al-27 MAS NMR, IR spectra of pyridine adsorption, and NH3-TPD. It is found that the matched hydrolysis and condensation rates of silicon and aluminum precursors are important factors to achieve highly ordered mesoporous materials. Al-27 MAS NMR spectra of Al-SBA-15 show that all aluminum species were incorporated into the silica framework for the samples prepared with the addition of fluoride. A two-step approach (sol-gel reaction at low pH followed by crystallization at high pH) was also employed for the synthesis of Al-SBA-15. Studies show that the two-step approach could efficiently avoid the leaching of aluminum from the framework of the material. The calcined Al-SBA-15 materials show highly ordered hexagonal mesostructure and have both Bronsted and Lewis acid sites with medium acidity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic-inorganic hybrid nanofibers are successfully synthesized by incorporating 3,3 ',5,5 '-tetramethylbenzidine (TMB) and H2PtCl6 at room temperature. The morphology and size can be simply controlled by tuning the molar ratio and initial concentration of reactants. A possible formation mechanism was suggested on the basis of the experimental results. The optical properties were investigated and the as-obtained product displays a strong fluorescence emission at room temperature that may be promising for applications in the fabrication of photoelectric materials. (C) 2008 Elsevier B.V. All rights reserved.