99 resultados para chromosomes
Resumo:
Silver crucian carp (Carassius auratus gibelio) is a unique gynogenetic fish. Because of its specific genetic background and reproduction mode, it is an intriguing model system for understanding regulatory mechanism of oocyte maturation division. It keeps its chromosomal integrity by inhibiting the first meiotic division (no extrusion of the first pole body). The spindle behavior during oocyte maturation is significantly different from that in gonochoristic fish. The chromosomes are first arranged in a tripolar spindle, and then they turn around and are reunited mutually to form a normal bipolar spindle. A new member of the fish A-type cyclin gene, cyclin A2, has been isolated by suppression of subtractive hybridization on the basis of its differential transcription in fully-grown oocytes between the gynogenetic silver crucian carp and gonochoristic color crucian carp. There are 18 differing amino acids in the total 428 residues of cyclin A2 between the two forms of crucian carps. In addition, cDNAs of cyclin A1 and cyclin B have also been cloned from them. Thus two members of A-type cyclins, cyclin A1 and cyclin A2, are demonstrated to exist in fish, just as in frog, humans, and mouse. Northern blotting reveals that cyclin A2 mRNA is more than 20-fold and cyclin A1 mRNA is about 2-fold in fully grown oocytes of gynogenetic silver crucian carp compared to gonochoristic color crucian carp. However, cyclin B does not show such a difference between them. Western blot analysis also shows that the cyclin A2 protein stockpiled in fully grown oocytes of gynogenetic crucian carp is much more abundant than in gonochoristic crucian carp. Moreover, two different cyclin A2 expression patterns during oocyte maturation have been revealed in the two closely related crucian carps. For color crucian carp, cyclin A2 protein is translated only after hormone stimulation. For silver crucian carp, cyclin A2 protein can be detected throughout the process of maturation division. The different expression of cyclin A2 may be a clue to understanding the special maturation division of gynogenetic silver crucian carp.
Resumo:
Mature eggs of allotetraploid carp were activated by inactive sperm or crossed with normal sperms of common carp (Cyprinus carpio), crucian carp (Carassius auratus), Chinese blunt snout bream (Megalobrama amblycephala), Hemiculter leucisculus and Pseudorasbora parva. Chromosome counts showed that all offspring of these crosses presented a mode number of 200 chromosomes (4n = 200), and their morphological traits are much like maternal. Microsatelite marker and RAPD patterns between allotetraploid maternal and its offspring, reproduced from different paternal species, were identical. Cytological, morphological and molecular evidences suggested that allotetraploid carp female nucleus would not fuse with any male nucleus and its reproduction mode might be gynogenesis and therefore their offspring are retaining their tetraploidy and give origin to clonal individuals.
Resumo:
Procedures to improve somatic cell nuclear transplantation in fish were evaluated. We reported effects of nonirradiated recipient eggs, inactivated recipient eggs, different combinations between recipient eggs and donor cells, duration of serum starvation, generation number, and passage number of donor cells on developmental rates of nuclear transplant (NT) embryos. Exposure to 25,000 R of gamma-rays inactivated recipient eggs. Single nucleus of cultured, synchronized somatic cell from gynogenetic bighead carp (Aristichthys nobilis) was transplanted into nonirradiated or genetically inactivated unfertilized egg of gibel carp (Carassius auratus gibelio). There was no significant difference in developmental rate between nonirradiated and inactivated recipient eggs (27.27% vs. 25.71%, respectively). Chromosome count showed that 70.59% of NT embryos contained 48 chromosomes. It showed that most NT embryos came from donor nuclei of bighead carp, which was supported by microsatellite analysis of NT embryos. But 23.53% of NT embryos contained more than 48 chromosomes. It was presumed that those superfluous chromosomes came from nonirradiated recipient eggs. Besides, 5.88% of NT embryos were chimeras. Eggs of blunt-snout bream (Megalobrama amblycephala) and gibel carp were better recipient eggs than those of loach (Misgurnus anguillicaudatus) (25% and 18.03% vs. 8.43%). Among different duration of serum starvation, developmental rate of NT embryos from somatic nuclei of three-day serum starvation was the highest, reaching 25.71% compared to 14.14% (control), 20% (five-day), and 21.95% (seven-day). Cultured donor cells of less passage facilitated reprogramming of NT embryos than those of more passage. Recloning might improve the developmental rate of NT embryos from the differentiated donor nuclei. Developmental rate of fourth generation was the highest (54.83%) and the lowest for first generation (14.14%) compared to second generation (38.96%) and third generation (53.01%). (C) 2002 Wiley-Liss, Inc.
Resumo:
Polyploid gibel carp, Carassius auratus gibelio, is an excellent model system for evolutionary genetics owing to its specific genetic background and reproductive modes. Comparative karyotype studies were performed in three cultured clones, one artificially manipulated group, and one mated group between two clones. Both the clones A and P had 156 chromosomes in their karyotypes, with 36 metacentric, 54 submetacentric, 36 subtelocentric, 24 acrocentric, and six small chromosomes. The karyotype of clone D contained 162 chromosomes, with 42 metacentric, 54 submetacentric, 36 subtelocentric, 24 acrocentric, and six small chromosomes. All the three clones had six small chromosomes in common. Group G, being originated from the clone D by artificial manipulation, showed supernumerary microchromosomes or chromosomal fragments, in addition to the normal chromosome complement that was identical to the clone D. The offspring from mating between clones D and A had 159 chromosomes. Comparing with the clone A, the DA offspring showed three extra metacentric chromosomes. In addition, variable RAPD fingerprint patterns and unusual SCAR marker inheritance were, respectively, detected among individuals of artificial group G and in the mated DA offspring. Both the chromosome and molecular findings suggest that genome reshuffling might have occurred by manipulation or mating of the clones.
Resumo:
Common carp Cyprinus carpio genomic DNA repetitive sequence CR1 has been DIG-labeled and hybridized in situ against chromosomes of red common carp (Cyprinus carpio L. Xingguo red var.). It is found that the repetitive sequence CR1 is mainly localized at the centromeric regions of chromosomes of the red common carp, The application of the chromosomal in situ hybridization technique on fish and the relationship between CR1 repetitive sequence distribution and its function have been discussed.
Resumo:
Chromosome behavior in meiosis was studied by air-drying, C-banding and surface-spreading methods in female intersexes of artificial triploid transparent-colored crucian carp (Carassius auratus). Chromosome pairing and contraction were obviously asynchronous. The preferential pairing of two homologous chromosomes was the major pattern of chromosome pairing, and a few triple pairing, repeated pairing, telomer or centromere associating and multiple pairing were also observed in the pachytene cells. The metaphase I cells were mainly composed of univalents, bivalents and trivalents, as well as few of other multivalents, such as tetravalents, pentavalents, hexavalents and heptavalents, were also found in some metaphase I cells. The chromosome elements including uni-, bi-, tri- and other multivalents varied considerably among the metaphase I cells, and the associating patterns of multivalents were also diverse. Some 6 n and 12 n cells, in which premeiotic endomitosis occurred once or twice, were found at the prophase and first metaphase of meiosis, and the pairing and associating patterns were basically similar to that of the triploid cells.
Resumo:
Background: Flying lemurs or Colugos (order Dermoptera) represent an ancient mammalian lineage that contains only two extant species. Although molecular evidence strongly supports that the orders Dermoptera, Scandentia, Lagomorpha, Rodentia and Primates form a superordinal clade called Supraprimates (or Euarchontoglires), the phylogenetic placement of Dermoptera within Supraprimates remains ambiguous. Results: To search for cytogenetic signatures that could help to clarify the evolutionary affinities within this superordinal group, we have established a genome-wide comparative map between human and the Malayan flying lemur (Galeopterus variegatus) by reciprocal chromosome painting using both human and G. variegatus chromosome-specific probes. The 22 human autosomal paints and the X chromosome paint defined 44 homologous segments in the G. variegatus genome. A putative inversion on GVA 11 was revealed by the hybridization patterns of human chromosome probes 16 and 19. Fifteen associations of human chromosome segments (HSA) were detected in the G. variegatus genome: HSA1/3, 1/10, 2/21, 3/ 21, 4/8, 4/18, 7/15, 7/16, 7/19, 10/16, 12/22 (twice), 14/15, 16/19 (twice). Reverse painting of G. variegatus chromosome-specific paints onto human chromosomes confirmed the above results, and defined the origin of the homologous human chromosomal segments in these associations. In total, G. variegatus paints revealed 49 homologous chromosomal segments in the HSA genome. Conclusion: Comparative analysis of our map with published maps from representative species of other placental orders, including Scandentia, Primates, Lagomorpha and Rodentia, suggests a signature rearrangement (HSA2q/21 association) that links Scandentia and Dermoptera to one sister clade. Our results thus provide new evidence for the hypothesis that Scandentia and Dermoptera have a closer phylogenetic relationship to each other than either of them has to Primates.
Resumo:
Recombinant "all-fish" growth hormone gene (GH) was microinjected Into the fertilized eggs of carp. A comparison between the growth traits of transgenics and non-transgenics was carried out, and the transgenic individuals with significant "fast-growing" effect were successfully gained. A comparison on the reproductivities was also given out between the transgenics and their non-transgenic siblings, and showed that the reproductive capacity of transgenics was substantially equivalent to those of the non-transgenics. On the other hand, the genetic separation and the characteristic distribution of the F-1 generation were genetically analyzed, which gave solid evidence for the hypothesis that 2-3 chromosomes are integrated with transgene. In addition, the distinct biological effects for multisite-integrated transgenes were further discussed. The present study opens a door for the breeding of "fast-growing" transgenic fish.
Resumo:
小麦条锈病(Puccinia striiformis f. sp. tritici)是世界性小麦病害,可导致受害小麦减产30%以上,甚至绝收。小麦条锈病在我国西南、华北麦区危害严重,四川麦区是小麦条锈病发病最重的地区之一,每年因条锈病流行造成小麦产量损失巨大。利用抗条锈病品种是控制该病害最安全、经济的有效途径,因此挖掘利用抗病新基因,开展抗病遗传基础研究是当前育种工作中面临的重要任务。 偏凸山羊草(Aegilops ventricosa,DDMvMv,2n=28)是一年生草本植物,起源于地中海西部沿岸地区,具有对小麦白粉病、锈病等高抗或免疫、耐盐、抗寒、蛋白质含量高等优良性状,是小麦遗传育种很好的种质资源。本研究以高抗条锈病的小麦—偏凸山羊草6Mv/6B代换系(Moisson 6Mv/6B)为材料,对其含有的带条锈病抗性基因的偏凸山羊草6Mv染色体在四川小麦背景中的传递情况、与小麦—簇毛麦双端体附加系所具有的白粉病抗性的聚合以及对Moisson 6Mv/6B进行电离辐射诱变筛选抗条锈病的小麦—偏凸山羊草易位系三个方面进行了研究。取得的主要研究结果如下: 1. Moisson 6Mv/6B与高感条锈病的四川地区普通小麦品种绵阳26、绵阳93-124和SW3243的杂种F1与其普通小麦亲本分别作为父、母本回交,通过对其BC1和F2的结实率、根尖细胞有丝分裂中期染色体的观察以及对条锈病抗性的鉴定,发现含6Mv染色体的F1植株作母本时的回交结实率(83.10%)普遍高于含6Mv染色体的F1植株作父本(48.61%),结实率与普通小麦基因型密切相关(χ2=34.15>>χ20.05=5.99(df=2));6Mv染色体在三种四川小麦中通过雌、雄配子传递的传递方式与其传递率间没有显著相关性,其传递率与普通小麦基因型呈显著相关性(χ2=6.42>χ20.05=5.99(df=2))。 2. Moisson 6Mv/6B与高抗白粉病的小麦—簇毛麦双端体附加系Pana(2n=42+2t)正反杂交,希望在聚合两者抗性的同时观察不同受体背景下的抗性反应。对Moisson 6Mv/6B和Pana正反杂交的结实率、杂交后代的农艺性状进行观察,并对杂交后代进行基因组荧光原位杂交(GISH)分析及条锈病和白粉病的抗性鉴定。结果表明Moisson 6Mv/6B作母本时杂交结实率(80.56%)高于Pana作母本时(58.33%),结实率与杂交方式间紧密相关(χ2=4.96>χ20.05=3.84(df=1));Moisson 6Mv/6B和Pana杂交后代株高比最高亲本高约10cm,成熟期也较两亲本提前两个星期左右;正反杂交后代中具有偏凸山羊草6Mv染色体的植株具有条锈病抗性,具有簇毛麦端体的植株具有白粉病抗性,同时筛选到4株含有偏凸山羊草和簇毛麦遗传物质并对条锈病和白粉病兼抗的材料,证明来自偏凸山羊草6Mv染色体的条锈病抗性与来自簇毛麦端体的白粉病抗性已经聚合在一起,且没有产生相互抑制的作用,暗示通过这两个抗性基因的聚合是完全能获得兼抗条锈病和白粉病的小麦新种质。 3. 对Moisson 6Mv/6B在减数分裂时期的成株进行总剂量为6Gy、辐射频率为120rad/min的60Co-γ射线辐射,对辐射植株自交后代进行农艺性状及根尖细胞有丝分裂中期染色体形态观察和条锈病抗性鉴定。结果为辐射植株自交结实率为2.22%,根尖细胞有丝分裂中期的染色体存在明显碎片,辐射自交后代植株对条锈病具有成株期抗性。 小麦—偏凸山羊草6Mv/6B代换系对条锈病抗性稳定,是培育条锈病抗性品种的良好供体。本研究证明在四川小麦背景中要利用该品种抗性,在结实数满足需要时,可将其作父本,亦可作母本,但关键是要选择好一个优良的受体基因型;同时其条锈病抗性与来自簇毛麦的白粉病抗性没有相互抑制作用,可将两者抗性有效聚合用于小麦育种中。 Wheat stripe rust (Puccinia striiformis f. sp. Tritici) is a worldwide disease of wheat, and could lead to victims of 30 percent or even total destruction of wheat production. Wheat stripe rust harms badly in China's southwest and North China. Sichuan province is one of the regions damaged by wheat stripe rust heavily. The use of resistant varieties is the most secure and economical way to control the wheat stripe rust. Therefore, it is essential to identify new disease-resistant genes and genetically research of disease resistance. Aegilops ventricosa (DDMvMv, 2n = 28) is an annual herbaceous plant, originating in the coastal areas of the western Mediterranean, with good characters such as resistance of wheat powdery, rust, salt, cold and high protein content. It is a good germplasm resource. In this study, the wheat- Aegilops ventricosa 6Mv/6B substitution line Moisson 6Mv/6B (highly resistant to the wheat stripe rust) was used to study on the transmission of chromosome 6Mv of Aegilops ventricosa in different genetic background of Sichuan wheat varieties, hybridization with wheat- Haynaldia villosa ditelosomic addition line Pana (highly resistant to the powdery mildew) and screening of wheat- Aegilops ventricosa translocation line by exposuring Moisson 6Mv/6B under ionizing radiation. The main results are as following: 1. Moisson 6Mv/6B was crossed with Sichuan wheat varieties mianyang26, mianyang93-124 and SW3243 (highly susceptible to stripe rust), respectively. Their F1 hybrids were further backcrossed as male and female to corresponding wheat varieties. The seed-setting rate, chromosomes confirmation in the mitotic metaphase of root tip cells, and resistance to stripe rust of the subsequent BC1 and F2 plants were investigated. The average seed-setting rate of backcross via 6Mv as female donor (83.10%) was higher than that of backcross via 6Mv as male donor (48.61%), suggesting that the seed-setting rate was associated with the wheat genotypes(χ2=34.15>>χ20.05=5.99(df=2)). In all analyzed populations, transmission frequencies of chromosome 6Mv were not correlated with the ways of 6Mv through male or through female. However, transmission frequencies of chromosome 6Mv were significantly correlated with Sichuan wheat genotypes(χ2=6.42>χ20.05=5.99(df=2)). 2. To aggregating the resistances to stripe rust and powdery mildew, as well as research on the resistance reactions in different genetic background, Moisson 6Mv/6B was reciprocally hybrided with the wheat- Haynaldia villosa ditelosomic addition line Pana (highly resistant to the powdery mildew). The seed-setting rate, agronomic characters, genomic in situ hybridization (GISH) of hybrid progenies,and resistances to stripe rust and powdery mildew were investigated. The results showed that the seed-setting rate of hybridization via Moisson 6Mv/6B as female donor (80.56%) was significant higher than that via Pana as female donor (58.33%). The seed-setting rate was associated with the hybrid methods (χ2 = 4.96> χ20.05 = 3.84 (df = 1)). The plant height of hybrid progenies was about 10 cm higher than Pana, the parent with maximum height. And the maturity of hybrid progenies was about two weeks earlier than that of the parents. In the hybrid progenies, the plants with the 6Mv chromosome have the resistance to stripe rust and the plants with the telosome from Haynaldia villosa have the resistance to powdery mildew. It was found that four plants with both the 6Mv chromosome and the telosome from Haynaldia villosa were resistant to stripe rust and powdery mildew. It indicated that the resistance to stripe rust and powdery mildew aggregated, and no mutual inhibition was found. It implied that the aggregation of the two resistance genes was able to provide the new wheat germplasm with the resistances to stripe rust and powdery mildew. 3. Moisson 6Mv/6B was irradiated with 60Co-γ rays of 6Gy (120rad/min) during meiosis. The agronomic characters and chromosomes confirmation in the mitotic metaphase of root tip cells,as well as resistance to stripe rust were investigated. The seed-setting rate of irradiated plants was only 2.22%. The chromosomes in mitotic metaphase had clear fragments. The resistance to stripe rust of progeny of irradiated plants was the adult-plant resistance. The wheat- Aegilops ventricosa 6Mv/6B substitution line is a good stripe rust resistance donor for its stabile resistance. Our study demonstrated that the key for use the resistance is to choose a good receptor. There is no difference between Moisson 6Mv/6B be the female and be the male if the seed number meets the requirement. At the same time, the stripe rust resistance of Moisson 6Mv/6B did not have the mutual inhibition with the powdery mildew resistance from Haynaldia villosa. It is able to aggregate the two resistances for wheat breeding.
Resumo:
同源四倍体水稻(2N=4X=48,AAAA)是由二倍体水稻(2N=2X=24,AA)通过秋水仙素诱导染色体加倍后得到的新品系,具有优良的抗病性以及较高的蛋白质含量。因此,在四倍体水平上挖掘水稻的增产潜力成为水稻育种的新手段。同源四倍体水稻具有很强的遗传可塑性和很弱的遗传保守性,利用其作为水稻远缘杂交的桥梁,从野生物种中不断地引进有益的基因,这将有助于杂交水稻的多代利用和固定水稻的杂种优势。但是迄今为止,还没有关于同源四倍体水稻遗传多样性,遗传背景的报道。目前世界关于同源四倍体水稻的研究主要集中在中国,主要研究方向为培育、筛选结实正常的亲本材料,配置和筛选结实率正常或接近正常的组合。经过几十年研究,虽然在材料构建,细胞学研究等方面取得了较大进展,但同样由于结实率低的瓶颈问题未解决,而使多倍体水稻育种未能取得实质性进展。而近年来一些关于同源四倍体水稻低结实率机理的细胞学研究也由于缺乏统计学数据而缺乏说明性。本文用SSR标记,对选取的36个结实率正常同源四倍体水稻三系亲本和14个来源二倍体亲本,分析他们的遗传差异和群体遗传结构。本文还利用我们培育的高、低结实率的同源四倍体水稻恢复系、优良保持系和杂种F1及二倍体对照为材料,进行系统深入的细胞遗传学研究,进一步探讨同源四倍体水稻有性传递后代的发育过程,探索分裂期染色体行为特征与遗传性状稳定性的关系,为进一步选育多倍体水稻品种并将其应用于生产提供理论依据。同源四倍体水稻突变株D4063-1直链淀粉含量比来源二倍体明恢63下降一半,即其直链淀粉含量为5.23%,为研究其直链淀粉含量下降的原因,本文还根据普通水稻Wx基因设计引物,扩增测序获得了D4063-1Wx基因的全序列,与已报道Wx基因进行比对分析,并根据D4063-1和籼稻、粳稻的序列差异并根据D4063-1在该片段上的特征序列位点设计了用于识别D4063-1的寡核苷酸片段,为快速、准确的鉴别低直链淀粉的D4063-1创造了条件。 SSR标记具有基因组分布广泛、数量丰富、多态性高、容易检测、共显性、结果稳定可靠、实验重现性好、操作简单、经济、易于高通量分析等许多优点,被认为是用于遗传多样性、品种鉴定、物种的系统发育、亲缘关系及起源等研究的非常有效的分子标记。本研究选取了中国科学院成都生物所培育的同源四倍体和二倍体水稻亲本,并用36个微卫星标记进行了遗传差异和种群遗传结构分析。在50个品系中,我们观察到较高水平的多态性,每基因等位基因数(Ae)分布于2至6之间(平均值3.028),多态性信息含量(PIC)分布于0.04至0.76之间(平均值0.366);期望杂合度(He)分布于0.04至0.76之间(平均值0.370),Shannon指数(I)分布于0.098至1.613之间(平均值0.649)。同源四倍体品系的等位基因数,期望杂合性和Shannon指数都比二倍体品系高。在供试50个品系中,较多材料均发现Rare基因,根据SSR多态性指数我们构建了同源四倍体和二倍体水稻的核心指纹库。F-统计值表明遗传差异主要存在于同源四倍体品系中(Fst=0.066)。聚类分析结果表明50个品系可以分为4个组。I组包括所有的同源四倍体和二倍体籼稻保持系,以及一个同源四倍体籼稻雄性不育系及其来源二倍体。II组仅包括IR来源的品系。III组比II组和IV组更复杂,包括同源四倍体和二倍体籼稻恢复系品系。IV组包括同源四倍体和二倍体粳稻品系。此外,由于等位基因及配子的遗传差异,同源四倍体与二倍体品系中存在单位点和双位点的遗传差异。分析结果表明,二倍体和四倍体水稻基因库的不同,其中遗传变异可以区分四倍体与二倍体水稻。同源四倍体水稻具有长期而独立的遗传性,我们能够选育并得到与二倍体亲本相比有特殊优良农艺性状的品系。 本研究以高结实率的同源四倍体水稻恢复系DTP-4、D明恢63及优良保持系D46B为材料进行农艺性状及细胞遗传学比较研究。DTP-4、D明恢63及保持系D46B的的染色体组成均为2N=4X=48,花粉母细胞具有较为理想的减数分裂行为,配对染色体的比率在99%以上,这与理论染色体组构成相符。DTP-4和D明恢63PMC减数分裂各个时期单价体和三价体的比例都非常低,而在MI, PMC观察到较多的二价体和四价体且四价体多以环状形式出现,其最大频率的染色体构型分别为12II 6IV和10II 7IV。恢复系DTP-4和D明恢63在MI四价体频率分别为2.00/PMC和2.26/PMC,而保持系D46B在MI四价体频率为6.00/PMC,极显著地高于恢复系品系,表明保持系D46B具有更好的染色体配对性质;AI保持系D46B的染色体滞后频率为10.62%,远低于恢复系材料DTP-4和D明恢63的19.44%和23.14%,接近二倍体对照明恢63的7.30%水平;TI保持系D46B具有比恢复系更低频率的微核数。而在TII,D46B的正常四分小孢子比率不但高于恢复系品系甚至高于二倍体对照。对高低结实率的同源四倍体水稻恢复系和杂种F1代的花粉育性,结实率和细胞遗传学行为进行了比较研究。DTP-4, D明恢63, D46A´DTP-4和D46A´D明恢63的花粉育性和结实率比D什香和D46A´D什香显著提高。减数分裂分析的结果表明,DTP-4,D明恢63,D什香,D46A´DTP-4,D46A´D明恢63和D46A´D什香其减数分裂染色体构型分别为:0.05I +19.96 II (9.89棒状+10.07环状) +0.01III + 2.20 IV, 0.11I +19.17 II (8.90 棒状+10.37 环状) +0.09III + 2.26 IV + 0.01 VI, 1.33I +9.46 II (4.50 棒状+4.96 环状) +0.44III + 6.02 IV + 0.09VI + 0.09 VIII, 0.02I +14.36 II (6.44 棒状+7.91 环状) +0.01III + 4.80IV + 0.01VIII, 0.06 I +17.67 II (11.01 棒状+6.67 环状) +0.06 III + 3.10 IV + 0.01 VI and 1.11 I +11.31 II (5.80 棒状+5.51 环状) +0.41 III + 5.63 IV+0.03VI+0.03VIII。在同源四倍体水稻恢复系和杂种F1代材料中,最常见的染色体构型为16II +4IV和12II +6IV。在减数分裂过程中,结实率较高的材料染色体异常现象较少而结实率较低的材料染色体异常现象较严重。在杂种F1代中,二价体的比例要低于其相应的恢复系亲本,同样的,单价体,三价体和多价体的比例相比其恢复系亲本也偏低。然而,在减数分裂MI,杂种F1代中四价体的比例要显著高于其恢复系亲本。在中期I,每细胞单价体的比例和花粉育性呈现出极高的负相关(-0.996),当单价体数目升高时,花粉育性下降。其次是每细胞三价体的比例(-0.987),之后则是每细胞多价体的比例与花粉育性的负相关(-0.948)。但是统计分析表明,二价体和四价体的比例对花粉育性和结实率没有显著影响。这一结果表明出了花粉育性和细胞减数分裂行为的相关性,同源四倍体的减数分裂行为为筛选高结实率的同源四倍体种系提供了理论依据。 突变体是遗传学研究的基本材料。利用突变体克隆水稻基因,并进而研究基因的生物学功能是水稻功能基因组学的重要研究内容。本课题组在多年的四倍体水稻育种研究中已获得多个低直链淀粉含量突变体,其中一些突变体在直链淀粉含量下降的同时,胚乳外观也发生了显著改变,呈半透明或不透明。同源四倍体水稻突变株D4063-1直链淀粉含量比来源二倍体明恢63下降一半,即其直链淀粉含量为5.23%。为研究其直链淀粉含量下降的原因,我们根据普通水稻Wx基因设计引物,扩增测序获得了D4063-1Wx基因的全序列,与已报道Wx基因进行比对分析;同源四倍体水稻D4063-1Wx基因最显著变化为在外显子序列中发生了碱基缺失,导致移码突变,在第9外显子终止密码子提前出现。D4063-1Wx基因碱基位点的变化还导致了其序列上的酶切位点的变化,对常用限制性内切酶位点分析分析结果表明同源四倍体水稻相对于籼稻和粳稻多了2个sph1酶切位点,相对于粳稻减少了6个Acc1,增加了4个Xba1,1个Xho1,1个Pst1和1个Sal1酶切位点。聚类分析表明D4063-1Wx基因序列与籼稻亲源关系较近,由此推测D4063-1Wx基因来源于籼稻的Wxa基因型。另外,根据D4063-1Wx基因的碱基差异,我们推测D4063-1Wx基因外显子碱基变化导致的RNA加工障碍是其直链淀粉降低的主要原因,并可能与其米饭较软等品质相关。本文还根据D4063-1和籼稻、粳稻的序列差异并根据D4063-1在该片段上的特征序列位点设计了用于识别D4063-1的寡核苷酸片段,并作为PCR反应的引物命名为AUT4063-1,将该引物与我们设计的扩增普通籼稻、粳稻的Wx基因引物F5配合使用建立了识别D4063-1的显性和共显性两种检测方式的分子标记,为快速、准确的鉴别低直链淀粉的D4063-1创造了条件。 研究同源四倍体水稻基因组的遗传差异,探索同源四倍体水稻的遗传规律,研究分裂期染色体行为特征与遗传性状稳定性的关系,旨在揭示四倍体水稻中同源染色体配对能力的遗传差异,为进一步选育多倍体水稻品种并将其应用于生产提供理论依据。 Autotetraploid rice (2N=4X=48, AAAA) is a new germplasm developed from diploid rice (2N=2X=24, AA) through chromosomes doubling with colchicines and is an excellent resource for desirable resistance genes to the pathogens and high protein content. Therefore, heterosis utilization on polyploidy is becoming a new strategy in rice breeding. At present, the main research on autotetraploid rice centralizes in China. Breeding effort has been made to improve autotetraploid rice genetically, however, the progresses are limited due to higher degree of divergence between hybrid sterility and polygenic nature. But to date, almost nothing is reported about the genetic diversity, original and genetic background of autotetraploid rice. Despite several reports on cytological analysis of the mechanisms of low seed set in autotetraploid rice still the results are inconclusive due to lack the statistical evaluation. Therefore, the study on the mechanisms of low seed set in autotetraploid is a priority for rice breeding. Microsatellites or simple sequence repeats (SSRs) are the widely used marker for estimating genetic diversity in many species, including wild, weedy, and cultivated rice. In our research, genetic diversity and population genetic structure of autotetraploid and diploid populations collected from Chengdu Institute of Biology, Chinese Academy of Sciences were studied based on 36 microsatellite loci. For the total of 50 varieties, a moderate to high level of genetic diversity was observed at population levels with the number of alleles per locus (Ae) ranging from 2 to 6 (mean 3.028) and PIC ranging from 0.04 to 0.76 (mean 0.366). The expected heterozygosity (He) varied from 0.04 to 0.76 with the mean of 0.370 and Shannon’s index (I) ranging from 0.098 to 1.613 (mean 0.649). The autotetraploid populations showed a slightly higher level of effective alleles, the expected heterozygosity and Shannon’s index than that of diploid populations. Rare alleles were observed at most of the SSR loci in one or more of the 50 accessions and core fingerprint database of the autotetraploid and diploid rice was constructed. The F-statistics showed that genetic variability mainly existed among autotetraploid populations rather than among diploid populations (Fst=0.066). Cluster analysis of the 50 accessions showed four major groups. Group I contained all of the autotetraploid and diploid indica maintainer lines and a autotetraploid and its original diploid indica male sterile lines. Groups II contained only original of IR accessions. Group III was more diverse than either group II or IV and comprised of both autotetraploid and diploid indica restoring lines. Group IV included japonica cluster of the autotetraploid and diploid rices. Furthermore, genetic differences at the single-locus and two-locus levels, as well as components due to allelic and gametic differentiation, were revealed between autotetraploid and diploid varieties. This analysis indicated that the gene pools of diploid and autotetraploid rice are somewhat dissimilar, which made a variation that distinguishes autotetraploid from diploid rices. Using this variation, we can breed new autotetraploid varieties with some new important agricultural characters but the diploid rice has not. Cytogenetic characteristics in restorer lines DTP-4, DMinghui63 and maintainer line D46B of autotetraploid rices were studied. DTP-4, DMinghui63 and D46B showed the advantage of high seed set and biological yield. The meiotic chromosome behavior was slightly irregular in DTP-4, DMinghui63 and D46B. We observed less univalent, trivalent and multivalent at MI, but more bivalent and quadrivalent were observed. The most frequent chromosome configurations were 12II 6IVand 10II 7IV in restorer and maintainer lines, respectively. The quadrivalent frequency of DTP-4 and Dminghui63 at metaphase(MI) was respectively 2.00/PMC and 2.26/PMC. However that frequency of D46B was 6.00/PMC, which was greatly significantly higher than DTP-4 and Dminghui63. That indicates the maintainer D46B has better chromosome pairing capability in metaphase (MI). The frequency of lagging chromosomes of the maintainer D46B at anaphaseI (AI) was 10.62%, which was significantly lower than that of DTP-4(19.44%) and Dminghui63(23.14%) and nearly reaching the level of diploid CK(7.30%). In telophaseI (TI) maintainer D46B showed lower frequency of microkernel at TI and lower frequency of abnormal spores at telophaseII(TII). We also studied pollen fertility, seed set and cytogenetic characteristics of restorer lines and F1 hybrids of autotetraploid rice. DTP-4, DMinghui63, D46A´DTP-4 and D46A´DMinghui63 showed significantly higher pollen fertility and seed set than DShixiang and D46A´DShixiang. Pairing configurations in PMC of DTP-4, DMinghui63, DShixiang, D46A´DTP-4, D46A´DMinghui63 and D46A´DShixiang were 0.05 I+19.96 II (9.89 rod+10.07 ring)+0.01 III+2.20 IV, 0.11 I+19.17 II (8.90 rod+10.37 ring)+0.09 III+2.26 IV+0.01 VI, 1.33 I+9.46 II (4.50 rod+4.96 ring)+0.44 III+6.02 IV+0.09 VI+0.09 VIII, 0.02 I+14.36 II (6.44 rod+7.91 ring)+0.01 III+4.80 IV+0.01V III, 0.06 I+17.67 II (11.01 rod+6.67 ring)+0.06 III+3.10 IV+0.01 VI and 1.11 I+11.31 II (5.80 rod+5.51 ring)+0.41 III+5.63 IV+0.03 VI+0.03 VIII, respectively. Configuration 16 II+4 IV and 12 II+6 IV occurred in the highest frequency among the autotetraploid restorers and hybrids. Meiotic chromosome behaviors were less abnormal in the tetraploids with high seed set than those with low seed set. The hybrids had fewer frequencies of bivalents, univalents, trivalents and multivalents than the restorers, but higher frequency of quatrivalents than the restorers at MI. The frequency of univalents at M1 had the most impact on pollen fertility and seed set, i.e., pollen fertility decreased with the increase of univalents. The secondary impact factors were trivalents and multivalents, and bivalents and quatrivalents had no effect on pollen fertility and seed set. The correlative relationship between pollen fertility and cytogenetic behaviors could be utilized to improve seed set in autotetraploidy breeding. The amylose content of autotetraploid indica mutant Rice D4063-1 dropped by half than diploid Minghui 63, that is, its amylose content of 5.23%.The whole sequence of Waxy gene of D4063-1 is amplified and sequenced. And the discrepancy of bases is found comparing to the reported Waxy gene. The Waxy gene of autotetraploid Rice D4063-1 had a base deletion in exon sequence, which resulted frameshift mutation in exon 9 and termination codon occur early. The mutation of Wx also led to the change of some common restriction endonuclease sites. Results showed compared to indica and japonica, D4063-1 had two adding sph1 sites. Compared to japonica, D4063-1 had six decreasing Acc1, a adding Xho1, Pst1 and Sal1 restriction sites. Phylogeny analysis shows that the DNA sequence of Waxy gene of D4063-1 is closer to Indica, and we suppose that the Waxy gene of D4063-1 is origin from genotype Wxa. In addition, according to the base differences of Wx in D4063-1, we deduce that RNA processing obstacle led by base change of intron is the main cause to low the amylose content, and related to phenotype of its soft rice. Based on analysis of fragments of D4063-1, indica and japonica and according to the special point of the three species, primers as markers-AUT4063-I were designed for distinguishing the D4063-1 from other rice. Combining with primer pair F5, dominant and codominant ways were established for discriminating them., rapid and correct identification of D4063-1 from other rice could be done. The genetic analysis is important to ensure the original of autotetraploid rice, for maintaining the “distinctiveness” of autotetraploid varieties, and to differentiate between the various genetic background of autotetraploid rice. The autotetraploid breeding will benefit from detailed analysis of genetic diversity in the germplasm collections. Further investigation on mechanisms of meiotic stability should benefit polyploid breeding. These findings demonstrated opportunity to improve meiotic abnormalities as well as grain fertilities in autotetraploid rice.
Resumo:
水稻是重要的粮食作物,其产量的增加和品质的改良都是关系国计民生的大事。就我国现阶段的国情而言,水稻产量在现有水平上稳步提升仍是未来十几年甚至几十年农业生产最重要的目标之一。尽管根据“超级杂交水稻育种”的战略设想和水稻育种实践,通过不断地改进育种技术可望在更高的产量水平上进行水稻杂种优势利用,在稻属植物内还具有很大的产量潜力可以挖掘。然而,仅仅从现有的种质基础出发,要更大幅度提高水稻单产,实现“超级杂交稻”的目标也存在一些困难:现有的推广品种是二倍体,尽管种类众多,但是其基因组的来源相对单一;同时,水稻基因组DNA含量也是作物中最少的,基因组内寻求开发潜力有一定困难;水稻作为C3植物,光合利用效率不高也是制约水稻产量提高的因素之一。因此,寻求常规手段以外的技术突破或者方法创新,是实现“超级杂交稻”的目标的迫切需求。本研究利用秋水仙素能抑制细胞分裂中纺锤丝的收缩、使细胞染色体加倍的作用,对水稻幼穗诱导的愈伤组织细胞进行加倍,并分化出再生植株;创制出水稻同源四倍体新的种质材料,在此基础上选育水稻同源四倍体雄性不育三系材料,并实现水稻同源四倍体的三系配套,开展水稻同源四倍体杂种优势利用和四倍体杂交水稻选育研究,建立水稻同源四倍体杂种优势利用的新技术体系。这不仅有助于倍性水平杂种优势的开拓和利用,同时也将为我国新世纪“超级稻”育种研究开辟一条新的技术途径。 水稻幼穗诱导愈伤组织并分化成苗是一项成熟、简单的组织培养技术。本研究以普通二倍体水稻亲本为材料,用秋水仙素进行水稻的多倍体化诱导,创制同源四倍体水稻三系亲本材料并对其进行鉴定。多倍体化以秋水仙素诱导的愈伤组织培养为基础,研究不同秋水仙素浓度梯度和愈伤组织诱导培养基组合对诱导四倍体植株的影响。结果表明在MS+2,4 D 1.0mg/L+ KT0.2mg/L+ IAA0.2mg/L 和500mg/L的秋水仙素处理下,水稻愈伤组织染色体加倍(有最高的效率)效果较好,平均加倍频率可达25.26%,其中,材料CDR22和IR26诱导较易成功,加倍频率分别达到75%和26.5%;相对材料94109 1.3%加倍频率和冈46B 10.8%加倍频率,诱导率差异极显著。 对水稻四倍体材料进行了形态学鉴定结果表明,与二倍体水稻对照相比其株高、穗长、花粉育性等主要农艺性状,确定四倍体材料在穗长和千粒重两方面极显著提高,种子的长度和宽度也显著增长。对花粉育性鉴定,确认水稻四倍体不育系材料仍为不育,保持系材料自交和杂交可育,恢复系材料自交和杂交可育。对四倍体材料进行细胞形态、染色体数目等方面进行细胞学鉴定,经核型分析表明水稻四倍体材料具有48条染色体,是二倍体水稻的两倍。水稻四倍体材料根尖分生组织细胞与二倍体的根尖分生组织细胞相比,细胞体积、细胞核和核仁显著增大。四倍体三系材料在细胞有丝分裂中期均可规则排列在赤道板,并能均等地移向两极;后期观察中没有发现染色体分离滞后现象,分裂末期细胞能够形成大小相对均一的子细胞。水稻同源四倍体三系材料细胞分裂未见异常,植株生长发育正常。 从1996年至2006年,针对结实率、有效分蘖、着粒数和穗长等主要农艺性状,通过系谱选育的方法,对培育的同源四倍体水稻亲本材料进行了连续选择和改良,取得较好成效。表现为结实率的改良效果极佳,所有改良材料的平均结实率均呈上升趋势,如D237(29.70%→72.70%)、DTB(19.55%→53.21%)等。有效分蘖总体呈现上升趋势,但在不同的年份,如1998和2002存在较大的负向波动。部分材料改良效果明显,如D19B(5.87→13.50)、D什香 (7.00→12.00)等;同时一些材料如DTB和D明恢63虽然总体略有提高,但在不同的年份波动很大,因此存在较大改良阻力,原因还有待进一步研究。着粒数的改良上升趋势比较显著,除保持系的DTB之外,其余材料的平均着粒数有显著提高。穗长的改良阻力较大,虽然不同材料总体上有所提高,但效果并不显著,并且不同年份有较大负向波动(2001)。此外还对株高、剑叶长等性状也进行了选择,但效果不显著,原因有待进一步提高。同源四倍体材料产量相关性状遗传改良幅度不一致,保持系和恢复系间的遗传改良效果也存在差异。这为同源四倍体水稻的进一步利用打下了良好的基础。 籼稻和粳稻亚种间杂交及杂种优势利用的主要障碍就是其低的结实率。而同源四倍体杂交水稻的研究为提高杂交水稻的杂种优势利用创造了新的途径。本研究通过随机区组设计方案,挑选性状优良的二倍体水稻材料,包括雄性不育系,保持系和恢复系进行秋水仙素诱导加倍,从而获得同源四倍体水稻对应的三系材料。利用选育的优良水稻同源四倍体三系材料,配制7个杂交组合,杂交F1代与其恢复系亲本进行比较,用于计算超亲优势(HB);而杂交F1代与生产上大面积推广的二倍体杂交品种汕优63进行比较,用于计算杂种优势。结果显示,同源四倍体杂交水稻的超亲优势表现为:每株有效穗变化幅度为1.4%至105.9%,总粒数为0.5%至74.3%,每穗实粒数为17.6%至255.7%,结实率为9.6%至130.4%。这些农艺性状的改良使得这7个杂种F1的理论产量的超亲优势高达64.8%至672.7%。小区试验中四倍体杂交水稻组合T461A/T4002和T461A/T4193分别比二倍体对照汕优63提高46.3%和38.3%以上,除一个品种以外所有品种产量均接近或高于汕优63的产量。同源四倍体水稻强大的杂种优势表明,亚种间杂交育性低的问题可通过四倍体化及强化选择来解决。此外,同源四倍体杂交水稻器官的巨大性也是其产量提高的有利因素,水稻同源四倍体三系杂种优势利用研究具有一定的理论价值和商业生产潜力。 Rice is one of the major food crops, the improvement of the production and quality of it is an important thing related to the people's livelihood. On China's current national conditions, steadily increase of the rice yield based on the current level is still one of the most important goals in the next decade or even decades of agricultural production. According to the "super hybrid rice breeding" the strategic and rice breeding practice, improvement of the use of hybrid rice heterosis through continuous improvements in breeding technology is expected to get a higher level of rice yield, there are also a great yield potential can be exploited. However, there are also some difficulties to increase rice yield obviously and implement the goal of "super hybrid rice" based on the existing germplasm: Rice varieties in promotion are diploid, although there are many varieties, but their genome are from a comparatively single source; Meanwhile, the rice genome DNA are the least among the crops, it is difficult to exploit the development potential within the genome; Rice as C3 plants, photosynthetic efficiency is not high, it is one of the factors constraint rice yield. Therefore, seeking technological breakthroughs or innovative methods different from conventional means is the urgent needs to reach the target of "super hybrid rice". Using colchicine inhibit spindle contraction during cell division, double the cell chromosome, we induced callus cells from rice panicle to be doubled, and differentiated regeneration; we created a new autotetraploid rice germplasm material, and on that basis we bred male sterility three line autotetraploid rice materials, and the achieved the three line rice autotetraploid matchmaking, researched in autotetraploid rice heterosis usage and tetraploid hybrid rice breeding, constituted a new technology system of autotetraploid hybrid rice heterosis utilization. This not only helps the tetraploid rice heterosis exploration and use, but also inaugurates a new technical means for China in the new century "super rice" breeding research. We chose ordinary diploid rice as materials, using colchicine to induce the polyploidization, created the autotetraploid rice three-line materials and identified them. The polyploidization was based on the colchicine-induced callus tissue culture, and we experimented different colchicine concentrations and culture mediums to induce tetraploid plants, confirmed that the optimal concentration for inducement was 500 mg/L, the average induce rate was 25.26 %. Among all the materials, CDR22 and IR26 had higher induced rate; in contrary, 94109 and GANG46B had lower induced rate, the difference was significant. Autotetraploid materials was identified of both morphological and cytological, compared plant height, length of pollen sterility, and other major agronomic traits with a diploid rice as the control plant, identified that the autotetraploid materials had very significant advantages in ear length and thousand-grain weight, as well as the size of the seeds. Cytology identification included observation of the cell morphology, the number of chromosomes, and karyotype analysis on the autotetraploid materials confirmed that their chromosome number was 48, twice of the diploid rice. Mitoses in the three lines were common: chromosomes arrayed normally in metaphase and separated balanced into the two poles, chromosome moved without lagging in anaphase and daughter cells normally formed in telophase except one. It has been proved that tetraploid rice has normal meiosis as their diploid relatives, which usually including series of sub-phases as interphase, prophase I (five sub-phases), prophase II, metaphase I, II, anaphase I, II and telophase I, II. However, abnormal phenomena, such as formation of tetravalent, trivalent and univalent, chromosome lagging and so on, which would finally block meiosis. Configurations of chromosome in metaphaseⅠwere versatile in structure and form accept the bivalent. That condition varied in different strain, suggesting more complex paring configurations and more versatile genetic characters in tetraploid rice. All these abnormalities in meiosis contributed to low fertility of gamete and might consequently resulted in low seed setting. Successive selection and improvement on seed set, productive tiller per plant, total grains per panicle, panicle length and so on had been carried out from 1996 to 2006. The raise of seed sets was significant in both restorers and maintainers. Seed sets of some strains were improved more significantly than others, for example D237(29.70%→72.70%)、DTB(19.55%→53.21%)and et al.. Productive tiller per plant was improved to some extant. The tendency of improvement was rising on the whole but changed in some years such as 1998 and 2002. Part of the stains increased greatly, such as D19B(5.87→13.50)、Dshixiang (7.00→12.00) and so on, but some strains including DTB and Dminghui63 only increased little and decreased in some years by unknown reason. Total grains per panicle increased significantly and all strains except DTB increased. Improvement of panicle length termed to be hard. Different strains showed different capacities for improvement and floating existed in different years for example 2001. It has been proved that other agronomical traits including plant length, flag leaf length and so on could be improved but not significantly by selection also. In a word, agronomical traits could be raised by successive selection that is prerequisite for further utility of autotetraploid rice. Poor fertility is the main barrier for utilizing heterosis between the two rice (Oryza stiva L.) sub-species, indica and japonica. Recently, the development of autotetraploid hybrids (2n=4x=48) has been suggested as a new method for increasing heterosis in hybrid rice. Using standard experimental protocols, the elite diploid rice male sterile, maintainer, and restorer lines were colchine-doubled and autotetraploid counterparts were obtained. Seven resulting hybrids were analyzed for heterobeltiosis (HB), where the F1 was compared to the male parent, and the degree of heterosis, where the F1 was compared to the diploid commercial hybrid, Shanyou 63. The HB among the autotetraploid hybrids ranged from 1.4 to 105.9% for the productive panicles per plant, 0.5 to 74.3% for total kernels per panicle, 17.6 to 255.7% for filled kernels per panicle, and 9.6 to 130.4% for seed set. Improvements in these yield components resulted in the HB for kernel yield ranging from 64.8 to 672.7% among the seven hybrids. Hybrids T461A/T4002 and T461A/T4193 yielded 46.3 and 38.3% more, respectively than Shanyou 63, and all other hybrids but one yielded the same or more than Shanyou 63. The high heterosis for yield suggests that hybrid sterility between two rice sub-species may be overcome by using tetraploid lines followed by intensive selection. Also, the gigantic features of the autotetraploid hybrids may establish a plant structure able to support the higher yield.
Resumo:
通过秋水仙素诱导获得同源四倍体水稻10个株系,包括6个恢复系、3个保持系和1个不育系,这些株系具有加倍的染色体组。田间观察表明10个株系具有特殊的农艺性状:茎杆变粗壮、植株颜色加深、叶片变厚、叶宽适度增加、分蘖数减少、有效分蘖的比率下降等。根尖有丝分裂鉴定表明,同源四倍体水稻10个株系具有正常的有丝分裂,观察细胞的染色体数目皆为2n=48。花粉母细胞减数分裂鉴定表明10个株系具有比较理想的减数分裂行为,后期I染色体滞后、末期I微核生成和末期II异常小孢子比率较低,能较好的完成减数分裂过程,其中后期I染色体滞后比率约为10%-20%,末期I微核生成比率约为1%-6%,末期II异常小孢子比率约为1%-8%。这提示,染色体联合和分离不规则导致三价体、单价体 和落后染色体等产生,并进一步导致在后期和末期不均横分离产生异常小孢子,这可能是同源四倍体株系结实率不高的原因之一。 同源四倍体水稻正常胚囊为蓼型,变异胚囊具有多种类型,其比率显著高于二倍体对照,变化范围为39.62%-69.85%。按变异胚囊的结构特点和形成方式,分为四种类型:退化型,结构变异型,无融合生殖型和反足细胞增殖型。退化型胚囊的平均比率为29.17%,包括小胚囊(15.04%)和完全退化胚囊(14.13%),前者仍有较小胚囊腔而后者胚囊腔缺失。结构变异胚囊包括结构缺失、结构重复和位置异常,反映了蓼型胚囊八核七细胞结构的变异,其在各株系的平均比率为18.96%。无融合生殖胚囊发生比率极低,平均比率为1.77%,类型包括反足胚和卵细胞胚。反足细胞增殖胚囊是反足细胞团频繁增殖形成,伴随上述三种变异发生使异常胚囊的多样性进一步增加,其在各株系的平均比率为10.62%。相关分析表明,同源四倍体水稻结实可能主要来自三部分:正常胚囊、正常型小胚囊和反足细胞增殖型胚囊。这三种胚囊具有相对完整的蓼型结构,可能具有较好的育性,其对结实率的贡献程度估计值分别为72.44%、15.12%、12.44%。此外,完全退化型胚囊和位置异常型胚囊对结实率分别表现出显著(-0.66)和极显著(-0.92)的负相关,这表明二者可能是结实性的抑制因素。 Ten autotetraploid strains, which include six restoring lines, three maintaining lines and a sterile line, are derived from artificial induction by colchicine treatments. Variations of agronomical traits are observed which include large organs, sturdy plants, long panicle length and deep leaf color and so on. It has been confirmed that autotetraploid strains exhibit normal chromosome behaviors in mitosis and the chromosome numbers are all 48. Moreover, abnormal chromosome behaviors are investigated in meiosis including univalent, trivalent, quatrivalent, chromosome lagging and microkernel and so on. It evaluates that the percentage of chromosome lagging in anaphase I is about 10%-20%, the percentage of microkernel in telophase I is about 1%-6% and the percentage of abnormal microspore in telophase II is about 1%-8%. In all, abnormal behaviors of chromosomes could induce univalent, trivalent and et al. and subsequently induce infertile microspore. That may be one of the causes of low seed sets in autotetraploid strains. Embryo sacs of autotetraploid strains are formed according to the Polygonum type. However, these strains exhibit variations of abnormal embryo sacs at high frequencies (39.62% - 69.85%). The variations are frequently involved in the spikelets of the main panicles and the first tillers, leading to obvious decreases of the percentages of normal embryo sacs among the strains. Four types of abnormal embryo sacs are classified basing on their different structures and origins: degenerated embryo sac (DES), structure variation (SV), apomixis (Apo) and antipodal cell proliferation (ACP). Embryo sacs of DES (29.17%) exhibit small embryo sacs (15.04%) or no embryo sac (14.13%), the former showing embryo sacs with decreased size and the latter showing no sac. Embryo sacs of AS (18.96%) include three subtypes: structure deletion, structure duplication and location variation, which suggests abnormalities of the eight nuclei, seven celled pattern of the Polygonum type. Embryo sacs of Apo (only 1.77%) include two origins of apomictic embryos: antipodal embryo and egg embryo. Embryo sacs of ACP are observed frequently (10.62%) in autotetraploid strains which subsequently increase the variations of abnormal embryo sacs. It evaluates by the Pearson’s correlation analysis that seed set is probably contributed by three origins of embryo sacs: normal embryo sacs, small embryo sacs (normal pattern) and embryo sacs of ACP. These three origins exhibit comparatively good structure of the Polygonum type and could account for seed set at a percentage of 72.44%, 15.12%, 12.44%, respectively. Moreover, the subtype of no embryo sac (NES) negatively related to seed set at the P>0.01 level (-0.92) and the subtype of location variation (LV) negatively related to seed set at the P>0.05 level (-0.66). Which suggest the two subtypes may have strong stress on seed set.
Resumo:
课题组在不断地创制新的同源四倍体材料的同时,连续多年以提高结实率为目的培育、筛选自交系材料,已获得自交繁殖十二年的高代自交系材料。相对于诱导创制初期,材料表现出的结实率低,同种系单株间的差异较大;高代材料已表现出较显著的结实率提升和较一致的农艺性状表型。 本实验选取课题组多年培育的同源四倍体水稻高代自交系材料,通过形态学、农艺性状和细胞遗传学比较,研究水稻同源四倍体与二倍体之间的异同。结果显示,所有同源四倍体材料的染色体组成均为2N=4X=48,花粉母细胞(PMC)减数分裂行为较正常,99%以上的染色体都能在减数分裂中期I(MI)发生联会、配对,形成四价体和二价体,这与理论染色体组构成相符。在减数分裂过程中,结实率较高的材料染色体异常现象较少而结实率较低的材料染色体异常现象较严重。统计分析表明,二价体和四价体的比例对结实率没有显著影响,但是三价体的数目对结实率有一定影响。这一结果表明了结实率和细胞减数分裂行为可能存在相关性,同源四倍体的减数分裂行为为筛选高结实率的同源四倍体种系提供了依据。 然后,对同源四倍体水稻高代自交系材料进行农艺性状和品质性状的统计与分析。主要针对结实率、每穗实粒数、有效分蘖和穗长等主要农艺性状,以及直链淀粉含量这一重要的品质性状进行统计。将统计结果与1996年诱导加倍的初代材料的数据相对比分析,结果显示所有材料经过多代选育培养,其农艺性状已经有了较显著的提高,同时同源四倍体材料的农艺性状稳定性也有了较显著的提升。如结实率的提高幅度较大,所有材料的平均结实率均显著高于加倍初代,而同种材料不同单株间的结实率差异也显著地减少,变异系数(CV)的平均值由1996年的41.15%减少到了2008年的28.81%。其他重要农艺性状也有不同程度的改良,种内变异系数也相应地降低。此外,实验测量了同源四倍体材料和来源二倍体材料的直链淀粉含量。分析结果显示,部分材料的直链淀粉含量与二倍体亲本产生了较显著的差异,这可能是诱导加倍过程中的遗传变异造成的;同源四倍体材料的种内变异系数(CV)平均值由1996年的6%下降到了2008年的3.88%,显示出在品质性状方面,同源四倍体材料的遗传稳定性也有较显著的增加。同源四倍体材料农艺性状经过多年的选育,表现出一定的提升,同时,经过多年自交纯化,所有材料种系内的性状差异逐渐缩小,说明同源四倍体水稻的遗传稳定性随着自交纯化而增强,这为同源四倍体水稻的进一步选育打下了良好的基础。 最后,通过测量连续两年的自交系材料的遗传多态性,分析材料间遗传差异和种群遗传结构,深入研究连续两代材料间的遗传差异,研究同源四倍体水稻与二倍体材料遗传稳定性之间的差异。实验采用18对SSR微卫星标记对连续两代15个材料,共94份样本进行差异分析。通过扩增条带长度多态性分析,计算不同材料以及同种材料不同世代间的遗传距离,构建同源四倍体和二倍体水稻的分子指纹库,并绘制聚类图。结果显示,同源四倍体和二倍体不同材料间的遗传差异比较大,遗传距离处于0.4757至0.2816之间;而相同品种不同世代材料间的遗传差异较小,但也表现出一定的遗传差异。同种同源四倍体材料不同世代间的遗传差异比二倍体材料更大,两代四倍体材料间遗传距离处于0.1359至0.0485之间;而两代二倍体材料间的遗传距离处于均小于0.0388。结果表明,同源四倍体水稻高代材料具有一定的遗传稳定性,但与来源二倍体材料相比,其世代间的遗传变异性仍然较强。这种结果说明,经过多代的自交纯化培育,同源四倍体水稻材料能够建立起相对稳定的遗传结构,同时,其强于二倍体亲本的变异性有能够为新品种的选育,农艺性状、品质性状的改良提供一定的遗传基础。此外,分析结果表明通过分子标记辅助检验,水稻材料间的遗传多态性能够有效地区分不同的品种,这为水稻品种的分子鉴定提供了一定的依据。 本研究从细胞学鉴定,农艺性状统计分析以及分子标记辅助聚类分析多方面地对同源四倍体水稻高代系进行了研究,对探究同源四倍体水稻的遗传规律,进一步揭示其遗传特性、农艺性状的遗传构成,为进一步选育优质的多倍体水稻提供了一定的理论依据。 This group insists on creating new Autotetraploid Rice (Oryza sativa L.) materials, while improving the seed-setting of them for many years, cultivated and selected the inbred line materials, has obtained the high generation inbred lines after twelve years cultivation. Compared to the early induced materials, which shown the low seed setting, and the large difference between the different plants in the same germ-line; the high generation materials have shown significant improvement in seed setting and more uniform phenotype agronomic traits. The autotetraploid rice high generation inbred lines material, which has been cultivated for more than 12 years, was chose in this experiment. The similarities and differences between autotetraploid and diploid rice was studied through morphological, agronomic and cytogenetic ways. The results showed that all the chromosome of autotetraploid materials are composed of 2N=4X=48, the pollen mother cells (PMC) meiosis behavior is normal, more than 99% chromosomes in metaphase I(MI) were federated and paired to form tetravalents or bivalents, which constitutes a consistent theory of genome. In the meiosis process, the material with a higher seed setting showed less chromosome abnormal than the material whose seed setting is lower. However, statistical analysis showed that the bivalent and tetravalent rate had no significant impact on seed setting, but the number of trivalent had a certain impact on seed setting. The result shows that the seed setting may be related to the meiosis behavior, which provides a basis to cultivate new autotetraploid germ line with high seed setting through the meiotic behavior. Furthermore, the agronomic and quality traits of autotetraploid rice high generation inbred material were statistically analyzed. The statistically analysis was focused on major agronomic traits such as: seed setting, grains per panicle, effective tillers and panicle length, as well as the important quality trait amylose content. The statistic data was compared with the data in 1996, when the first induced generation of autotetraploid material, and the result shows that after a multi-generation breeding, the agronomic traits has been significantly improved in all the materials, while the stability of agronomic traits also significant upgraded. For instant, the seed setting increased significantly, the average seed setting of all materials was significantly higher than the first induced generation, and the differences between different plants in the same species also significantly reduced, the average of the coefficient of variation (CV) was reduced from 41.15% in 1996 to 28.81% in 2008. Other important agronomic traits had improved in different degrees; the coefficient of variation within species is also reduced accordingly. In addition, the amylose content of autotetraploid and diploid materials was measured in this experiment. The results shows that the amylose content of some of the material differed from diploid parents significantly, it may caused by the genetic change during the inducing, autotetraploid materials intra-specific coefficient of variation (CV) average reduced from 6% in 1996 to 3.88% in 2008, shows that this is a significant increase of quality traits stability in autotetraploid rice. Agronomic traits of autotetraploid material shows some improvement after years of breeding, at the same time, after years of purification, all material within the germ-line gradually narrow the differences in traits indicates that autotetraploid rice genetic stability was enhanced, which laid a good foundation for the further autotetraploid rice breeding. Finally, this experiment studied the genetic differences between materials of two generations and researched the difference of genetic stability between diploid and autotetraploid rice materials through investigating the genetic polymorphism, genetic differences between materials and population genetic structure of inbred line materials of two consecutive years.18 pairs of SSR microsatellite markers for 15 materials of two generations were used in this experiment, and the total of 94 samples were analyzed. Through the amplification length polymorphism analysis of different materials and materials in different generations, the genetic distance between materials and generations was analyzed, a diploid and autotetraploid rice molecular fingerprint database and map rendering cluster were constructed. The result shows that the genetic distance is between 0.4757 to 0.2816 among different autotetraploid and diploid materials; the genetic distance between different generations of same species was less, but also shows a certain degree of genetic differences. The inter-generational genetic differences of autotetraploid materials were greater than of the diploid materials, which are 0.1359 to 0.0485 as the genetic distance; comparing with the 0.0388 of diploid materials. The result shows that high generation inbred autotetraploid rice material has a certain genetic stability, but the genetic variation between generations is still strong comparing with the source diploid materials. It indicates that, after many generations of purification cultivation, autotetraploid rice materials established a relatively stable genetic structure, at the same time, stronger variability than its diploid parents are useful in the breeding of new varieties, provides a genetic foundation to the agronomic and quality traits improvement. In addition, the analysis result shows that the through the molecular marker-assisted testing, rice genetic polymorphism between materials can effectively distinguish different species, provides a certain basis for molecular identification of varieties of rice. A series of investigation such as cytological identification, statistical analysis of agronomic traits, molecular marker-assisted cluster analysis was applied in this experiment to research genetic pattern of autotetraploid rice high generation inbred lines, revealed the genetic characteristics and the genetic composition of agronomic traits, provides a theoretical basis for the further selection of high quality autotetraploid rice.
Resumo:
This study provides a useful biodosimetry protocol for radiation accidents that involve high doses of heavy particle radiation. Human peripheral blood lymphocytes (PBLs) were irradiated in vitro with high doses (5–50 Gy) of charged heavy-ion particles (carbon ions, at an effective linear-energy-transfer (LET) of 34.6 keV/ m), and were then stimulated to obtain dividing cells. PBLs were treated with 100nMcalyculin A to force chromosomes to condense prematurely, and chromosome spreads were obtained and stained with Giemsa. The G2 prematurely condensed chromosome (G2-PCC) index and the number of G2-PCC including fragments (G2-PCC-Fs) per cell for each radiation dose point were scored. Dose-effect relationships were obtained by plotting the G2-PCC indices or G2-PCC-Fs numbers against radiation doses. The G2-PCC index was greater than 5% up to doses of 15 Gy; even after a 30Gy radiation dose, the index was 1 to 2%. At doses higher than 30 Gy, however, the G2-PCC indices were close to zero. The number of G2-PCC-Fs increased steeply for radiation doses up to 30 Gy at a rate of 1.07 Gy−1. At doses higher than 30 Gy, the numbers of G2-PCC-Fs could not be accurately indexed because of the limited numbers of cells for analysis. Therefore, the number of G2-PCC-Fs could be used to estimate radiation doses up to 30 Gy. In addition, a G2-PCC index close to zero could be used as an indicator for radiation doses greater than 40 Gy.