240 resultados para blue ray optical storage
Resumo:
A bisfurylfulgide, E, E-3,4-bis[1-(2,5-dimethyl-3-furyl)ethylidene]-3,4-dihydrofuran-2,5-dione, is synthesized by Stobbe condensation reaction. The molecular structure of target compound is confirmed by single crystal X-ray crystallography analysis. It shows that the distances between two possible reaction sites of molecule are 0.3394 and 0.3406 nm respectively, which is favorable to photocyclization. The photochromic properties of this compound in different solvents are investigated, and the result shows that the compound exhibits excellent photochromic behavior. The primary result of applied research on parallel image storage is also presented.
Resumo:
A slab optical waveguide (SOWG) has been used for study of adsorption of both methylene blue (MB) and new methylene blue (NMB) in liquid-solid interface. Adsorption characteristics of MB and NMB on both bare SOWG and silanized SOWG by octadecyltrichlorosilane (ODS) were compared. The simultaneous determinations of both MB and NMB were explored by flow injection SOWG spectrophotometric analysis and artificial neural networks (ANNs) for the first time. Concentrations of MB and NMB were estimated simultaneously with the ANNs. Results obtained with SOWG were compared with those got by conventional UV-visible spectrophotometry. (C) 2003 Elsevier Science B.V All rights reserved.
Resumo:
We developed an approach to realize blue, green and red emission from top-emitting white organic light-emitting diodes (OLEDs) through depositing exterior tunable optical films on top of the OLEDs. Three primary colors for full color display including blue, green and red emission are achieved by controlling the wavelength-dependent transmittance of the multilayer optical films overlaid on the emissive layer.
Resumo:
In this paper, we will report the preparation of a mixed-valence polyoxometalate compound (Bu4N)(4)[PMo12O40].2DMF.H2O (TBA = tetrabutylammonium; DMF = N,N-dimethyl formamide). The title compound has been photochemically synthesized and characterized by using elemental analysis, IR, solid diffusion reflectance electronic spectra, ESR spectra, XPS, CV and X-ray single-crystal analysis. The crystal lographic data are as follows: monoclinic, P2(1)/c, a = 14.124(3), b = 17.481(4), c = 22.744(5) Angstrom, beta = 101.66(3)degrees, V = 5500(2) Angstrom(3), C70H160Mo12N6O43P, M-r = 2956.29, Z = 2, D-c = 1.785 g/cm(3), F(000) = 2970 and mu(MoKalpha) = 1.412 mm(-1). The structure has been refined to R = 0.0638 and wR = 0.1975 by full-matrix least-squares methods. The title compound is composed of four tetrabutylammonium cations, one [(PMoMo11O40)-Mo-V](4-) heteropoly anion, two N,N-dimethyl formamide and one H2O molecule.
Resumo:
The title heteropoly blue, (Bu4N)(6)H-10 [(PMo11MoO40)-Mo-VI-O-V](4) . H2O has been photochemically synthesized and characterized with elemental analysis, solid diffusion reflectance electronic spectra, CV, ESR, XPS, IR spectra, conductivity measurement and X-ray single crystal analysis. The crystallographic data for C96H218Mo48N6O169P4 are as follows: M-r = 8889.76, triclinic, P (1) over bar, a = 1.4142 (3) nm, b = 2.6027 (5) nm, c = 2.6403(5) nm, alpha = 113.96(3)degrees, beta = 90.05(3)degrees, gamma = 105.71(3)degrees, V = 8.481 (3) nm(3), Z = 1, D-c = 1.741 g/cm(3), F (000) = 4264, mu = 1.798 mm(-1). The X-ray crystal structure analysis reveals that there Is one independent molecule in the unit cell of the title heteropoly blue which contains four mixed-valence heteropoly anions, six tetrabutylammonium cations and one water molecule. Its molecular structure possesses a centrosymmetrical arrangement in the unit cell. The phosphorus atom is In the crystallographic inversion center of the heteropoly anion and the eight oxygen atoms surrounding central phosphorus atom comprise of a distorted hexahedron. Heteropolyanion has two equal sets of PO4 tetrahedron. The PO4 tetrahedron and the MoO6 octahedron in the polyanion are greatly distorted.
Resumo:
The TSL glow of X-irradiated BaLiF3 crystallite vanished within 15 min of sunlight bleaching or after 2 similar to 3 days of room temperature annealing, which indicate that X-irradiation damage is light and can be easily erased. It is also found that BaLiF3:Eu2+ is photostimulatable and seems be a promising X-ray storage phosphor for practical utilization.
Resumo:
The deposition of CdO center dot nH(2)O On CdTe nanoparticles was studied in an aqueous phase. The CdTe nanocrystals (NCs) were prepared in aqueous solution through the reaction between Cd2+ and NaHTe in the presence of thioglycolic acid as a stabilizer. The molar ratio of the Cd2+ to Te2- in the precursory solution played an important role in the photoluminescence of the ultimate CdTe NCs. The strongest photoluminescence was obtained under 4.0 of [Cd2+]/[Te2-] at pH similar to 8.2. With the optimum dosage of Cd(II) hydrous oxide deposited on the CdTe NCs, the photoluminescence was enhanced greatly. The photoluminescence of these nanocomposites was kept constant in the pH range of 8.0-10.0, but dramatically decreased with an obvious blue-shifted peak while the pH was below 8.0. In addition, the photochemical oxidation of CdTe NCs with cadmium hydrous oxide deposition was markedly inhibited.
Resumo:
The InAsxSb1-x films were grown on (100) GaSb substrates by liquid-phase epitaxy, and their structural, electrical, and optical properties were investigated. The high-resolution x-ray diffraction results reveal that the single crystalline InAsxSb1-x films with a midrange composition are epitaxially grown on the GaSb substrates. Temperature dependence of the Hall mobility was theoretically modeled by considering several predominant scattering mechanisms. The results indicate that ionized impurity and dislocation scatterings dominate at low temperatures, while polar optical phonon scattering is important at room temperature (RT). Furthermore, the InAsxSb1-x films with the higher As composition exhibit the better crystalline quality and the higher mobility. The InAs0.35Sb0.65 film exhibits a Hall mobility of 4.62x10(4) cm(2) V-1 s(-1). The cutoff wavelength of photoresponse is extended to about 12 mu m with a maximum responsivity of 0.21 V/W at RT, showing great potential for RT long-wavelength infrared detection. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2989116]
Resumo:
The deposition of CdO center dot nH(2)O On CdTe nanoparticles was studied in an aqueous phase. The CdTe nanocrystals (NCs) were prepared in aqueous solution through the reaction between Cd2+ and NaHTe in the presence of thioglycolic acid as a stabilizer. The molar ratio of the Cd2+ to Te2- in the precursory solution played an important role in the photoluminescence of the ultimate CdTe NCs. The strongest photoluminescence was obtained under 4.0 of [Cd2+]/[Te2-] at pH similar to 8.2. With the optimum dosage of Cd(II) hydrous oxide deposited on the CdTe NCs, the photoluminescence was enhanced greatly. The photoluminescence of these nanocomposites was kept constant in the pH range of 8.0-10.0, but dramatically decreased with an obvious blue-shifted peak while the pH was below 8.0. In addition, the photochemical oxidation of CdTe NCs with cadmium hydrous oxide deposition was markedly inhibited.
Resumo:
An experimental study on the angular distribution and conversion of multi-keV X-ray sources produced from 2 ns-duration 527nm laser irradiated thick-foil targets on Shenguang II laser facility (SG-II) is reported. The angular distributions measured in front of the targets can be fitted with the function of f(theta) = alpha+ (1- alpha)cos(beta) theta (theta is the viewing angle relative to the target normal), where alpha = 0.41 +/- 0.014, beta = 0.77 +/- 0.04 for Ti K-shell X-ray Sources (similar to 4.75 keV for Ti K-shell), and alpha = 0.085 +/- 0.06, beta = 0.59 +/- 0.07 for Ag/Pd/Mo L-shell X-ray Sources (2-2.8 keV for Mo L-shell, 2.8-3.5 keV for Pd L-shell, and 3-3.8 keV for Ag L-shell). The isotropy of the angular-distribution of L-shell emission is worse than that of the K-shell emission at larger viewing angle (>70 degrees), due to its larger optical depth (stronger self-absorption) in the cold plasma side lobe Surrounding the central emission region, and in the central hot plasma region (emission region). There is no observable difference in the angular distributions of the L-shell X-ray emission among Ag, Pd, and Mo. The conversion efficiency of Ag/Pd/Mo L-shell X-ray sources is higher than that of the Ti K-shell X-ray sources, but the gain relative to the K-shell emission is not as high as that by using short pulse lasers. The conversion efficiency of the L-shell X-ray sources decrease, with increasing atomic numbers (or X-ray photon energy), similar to the behavior of the K-shell X-ray Source.
Resumo:
We propose a new x-ray laser mechanism that uses radiation from the strongest 3d --> 2p Ne-like resonance line in an optically thick plasma to radiatively drive population from the Ne-like ground state to the 3d state, which then lases to two 3p states. Collisional mixing of the 3p states with nearby 3s and 3d states depopulates the lower laser states. Modeling is presented for this mechanism in Ne-like Ar, and in experiments we observe one potential 3d --> 3p lasing transition at 45.1 nm in Ne-like Ar. (C) 1996 Optical Society of America
Resumo:
The dynamic interaction processes between a nano-second laser pulse and a gas-puff target, such as those of plasma formation, laser heating, and x-ray emission, have been investigated quantitatively. Time and space-resolved x-ray and optical measurement techniques were used in order to investigate time-resolved laser absorption and subsequent x-ray generation. Efficient absorption of the incident laser energy into the gas-puff target of 17%, 12%, 38%, and 91% for neon, argon, krypton, and xenon, respectively, was shown experimentally. It was found that the laser absorption starts and, simultaneously, soft x-ray emission occurs. The soft x-ray lasts much longer than the laser pulse due to the recombination. Temporal evolution of the soft x-ray emission region was analyzed by comparing the experimental results to the results of the model calculation, in which the laser light propagation through a gas-puff plasma was taken into account. (C) 2003 American Institute of Physics.
Resumo:
A theoretical investigation of the nonlinear copropagation of two optical pulses of different frequencies in a photonic crystal fiber is presented. Different phenomena are observed depending on whether the wavelength of the signal pulse is located in the normal or the anomalous dispersion region. In particular, it is found that the phenomenon of pulse trapping occurs when the signal wavelength is located in the normal dispersion region while the pump wavelength is located in the anomalous dispersion region. The signal pulse suffers cross-phase modulation by the Raman shifted soliton pulse and it is trapped and copropagates with the Raman soliton pulse along the fiber. As the input peak power of the pump pulse is increased, the red-shift of the Raman soliton is considerably enhanced with the simultaneous further blue-shift of the trapped pulse to satisfy the condition of group velocity matching.
Resumo:
In this paper, a new method for designing three-zone optical pupil filter is presented. The phase-only optical pupil filter and the amplitude-only optical pupil filters were designed. The first kind of pupil for optical data storage can increase the transverse resolution. The second kind of pupil filter can increase the axial and transverse resolution at the same time, which is applicable in three-dimension imaging in confocal microscopy. (C) 2007 Elsevier GmbH. All rights reserved.