445 resultados para atomic force microscopy, polymer melt, cement, superplaticizer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfonated poly(ether ether ketone) (SPEEK) and aminopropyltriethoxysilane (KH550) hybrid membranes doped with different weight ratio of phosphotungstic acid (PWA) were prepared by the casting procedure, as well as PWA as a catalyst for sol-gel process of KH550. The chemical structures of hybrid membranes were characterized by energy dispersive X-ray spectrometry (EDX) and Fourier transform infrared spectroscopy (FTIR). The morphology of hybrid membranes was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results had proved the uniform and homogeneous distribution of KH550 and PWA in these hybrid membranes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallization behaviors and morphology of asymmetric crystalline-crystalline diblock copolymers poly(ethylene oxide-lactide) (PEO-b-PLLA) were investigated using differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), and microscopic techniques (polarized optical microscopy (POM) and atomic force microscopy (AFM)). Both blocks of PEO5-b-PLLA(16) can be crystallized, which was confirmed by WAXD, while PEO block in PEO5-b-PLLA(30) is difficult to crystallize because of the confinement induced by the high glass transition temperature and crystallization of PLLA block with the microphase separation of the block copolymer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multiphase morphology of high impact polypropylene (hiPP), which is a reactor blend of polypropylene (PP) with ethylene-propylene copolymer, was investigated by transmission electron microscopy, selected area electron diffraction, atomic force microscopy, and field-emission scanning electron microscopy techniques in conjunction with an analysis of the hiPP composition and chain structure based on solvent fractionation, C-13-NMR, and differential scanning calorimetry measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P-type copper phthalocyanine (CuPc) and n-type hexadecafluorophthalocyanina-tocopper (F16CuPc) polycrystalline films were investigated by Kelvin probe force microscopy (KPFM). Topographic and corresponding surface potential images are obtained simultaneously. Surface potential images are related with the local work function of crystalline facets and potential barriers at the grain boundaries (GBs) in organic semiconductors. Based on the spatial distribution of surface potential at GBs, donor- and acceptor-like trapping states in the grain boundaries (GBs) of p-CuPc and n-F16CuPc films are confirmed respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Films obtained via drying a polymeric latex dispersion are normally colloidal crystalline where latex particles are packed into a face centered cubic (fcc) structure. Different from conventional atomic crystallites or hard sphere colloidal crystallites, the crystalline structure of these films is normally deformable due to the low glass transition temperature of the latex particles. Upon tensile deformation, depending on the drawing direction with respect to the normal of specific crystallographic plane, one observes different crystalline structural changes. Three typical situations where crystallographic c-axis, body diagonal or face diagonal of the fcc structure of the colloidal crystallites being parallel to the stretching direction were investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transition of lamellar crystal orientation from flat-on to edge-on in ultrathin films of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) via solvent vapor (toluene) treatment Was investigated. When the as-prepared film was treated in saturated solvent vapor, breakout crystals could form quickly, and then they transformed from square single crystals (flat-on lamellae) to dendrites and finally to nanowire crystals (edge-on lamellae). Initially, heterogeneous nucleation tit the polymer/substrate interface dominated the structure evolution, leading to flat-on lamellar crystals orientation. And the transition from faceted habits to dendrites indicated a transition of underlying mechanism from nucleation-controlled to diffusion-limited growth. As the solvent molecules gradually diffused into the polymer/substrate interface, it will subsequently weaken the polymer-substrate interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In polystyrene-block-poly(ethylene oxide) thin square platelets can be obtained via fast solvent evaporation by controlling the tethering density (0.08 < sigma < 0.11). The tethering density of the brushes is proportional to the thickness of the PEO crystal and increases with increasing initial solution heating temperature (T-i). When T-i < T-m, where T-m is the melting point of PEO, brushes with microphase-separated structures are observed. The formation of microphase-separated brushes depends on two factors: the strong incompatibility between PS and noncrystalline PEO chains (attached to the crystalline PEO) and the weak interaction between PS-PS brushes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Needle-like single crystals of poly(3-octylthiophene) (P3OT) have been prepared by tetrahydrofuran-vapor annealing. The morphology and structure of the crystals were characterized with optical microscopy, scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and wide-angle X-ray diffraction. It is observed that the P3OT molecules are packed with the backbones parallel to the length axis of the crystal and the alkyl side chains perpendicular to the substrate. The field effect transistor based on the P3OT single crystal exhibited a charge carrier mobility of 1.54 x 10(-4) cm(2)/(Vs) and on/off current ratio of 37, and the molecular orientation of the crystal is ascribed to account for the device performance. The time-dependent morphological evolution demonstrated that the crystals underwent Ostwald ripening when annealed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystalline morphologies of spin-coated poly(L-lactic acid) (PLLA) thin films under different conditions are investigated mainly with atomic force microscopy (AFM) technique. When PLLA concentration in chloroform is varied from 0.01 to 1% gradually, disordered structure, rod-shape and larger spheres aggregates are observed in thin films subsequently. Under different annealing temperature, such as at 78, 102, 122 degrees C, respectively, we can find most rod-like crystalline aggregates. Interestingly, we observed that nucleation sites locate at the edge of the holes at the original crystalline stage. Then, these holes developed to form chrysanthemum-like and rods subsequently with annealing time meanwhile the size and the shape of crystalline aggregate are changed. In addition. effect of substrate and solvent on morphology is also discussed. On the other hand, the possible mechanism of crystalline morphology evolution is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We developed an approach, i.e. solvent-assist crystallization (SAC), for growing high quality single crystals of head-to-tail regio-regular poly(3-butylthiophene) (P3BT). By means of atomic force microscopy, electron diffraction and X-ray diffraction, we found that P3BT macromolecules formed lamella single crystals through gradient crystallization, and in the single crystals, molecules packed normal to the lamella with extended-chain conformation with alkyl side chains in the growth front during crystallization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase separation of bisphenol A polycarbonate (PC) and poly(methyl methacrylate) (PMMA) thin blend film is suppressed by addition of solid epoxy oligomer. Epoxy has strong intermolecular interactions with both PC and PMMA, while PC and PMMA are quite incompatible with each other. Consequently, phase separation in the PC/PMMA blend film pushes epoxy to the interface; at the same time, PC and epoxy react readily at the interface to form a cross-linking structure, binding PMMA chains together. Therefore, the interface between PC and PMMA is effectively reinforced, and the PC/PMMA thin blend film is stabilized against phase separation. On the other hand, only an optimal content of epoxy (i.e., 10 wt %) can serve as an efficient interfacial agent. In contrast to the traditional reactive compatibilization, here we observed that the cross-linking structure along the interface is much more stable than block or graft copolymers. Atomic force microscopy (AFM) is used to characterize the morphological changes of the blend films as a function of annealing time. Two-dimensional fast Fourier transform (2D-FFT) of AFM data allows quantitative investigation of the scaling behavior of phase separation kinetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various metallized nanostructures (such as rings, wires with controllable lengths, spheres) have been successfully fabricated by coating metallic nanolayers onto soft nanotemplates through simple electroless methods. In particular, bimetallic nanostructures have been obtained by using simple methods. The multiple functional polymeric nanostructures, were obtained through the self-assembly of polystyrene/poly(4-vinyl pyridine) triblock copolymer (P4VP-b-PS-b-P4VP) in selective media by changing the common solvent properties. By combining field emission scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) characterization, it was confirmed that polymer/metal and bimetallic (Au@Ag) core-shell nanostructures could be achieved by chemical metal deposition method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembly morphology effects on the crystalline behavior of asymmetric semicrystalline block copolymer polystyrene-block-poly(L-lactic acid) thin film were investigated. Firstly, a series of distinctive self-assembly aggregates, from spherical to ellipsoid and rhombic lamellar micelles (two different kinds of rhombic micelles, defined as rhomb 1 and rhomb 2) was prepared by means of promoting the solvent selectivity. Then, the effects of these self-assembly aggregates on crystallization at the early stage of film evolution were investigated by in situ hot stage atomic force microscopy. Heterogeneous nucleation initiated from the spherical micelles and dendrites with flat on crystals appeared with increasing temperature. At high temperature, protruding structures were observed due to the thickening of the flat-on crystals and finally more thermodynamically stable crystallization formed. Annealing the rhombic lamellar micelles resulted in different phenomena. Turtle-shell-like crystalline structure initiated from the periphery of the rhombic micelle 1 and spread over the whole film surface in the presence of mostly noncrystalline domain interior. Erosion and small hole appeared at the surface of the rhombic lamellar micelle 2; no crystallization like that in rhomb 1 occurred. It indicated that the chain-folding degree was different in these two micelles, which resulted in different annealing behaviors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monodispersed nanoparticles of Ag(I)-polymer hybrids have been prepared by using designed crown-ether-centred two-armed copolymers to chelate Ag+ ions at the interface of organic-aqueous solutions. The copolymer-Ag+ complex nanoparticles, as well as the reduced copolymer-Ag nanoparticles, have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), and x-ray photoelectron spectroscopy (XPS). The particle size can be varied by simply changing the polymer concentration, the monomers, and/or the molecular weight. The copolymer-Ag(I) hybrids exhibit weak photoluminescence, which was substantially enhanced after the hybrids were reduced to copolymer-silver nanoparticles with UV irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report describes direct formation of giant vesicles from a series of poly(L-lysine)-block-poly(L-phenylalanine) (PLL-b-PPA) block copolymers from their water solution. These polymers are prepared by successive ring-opening polymerization (ROP) of the two alpha-amino acid N-carboxyanhydrides and then removing the side chain protecting groups by acidolysis. The structures of the copolymers are confirmed by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and size exclusion chromatography ( SEC). The vesicles are studied by atomic force microscopy (AFM), field emission scanning electron microscopy (ESEM), and confocal laser scanning microscopy (CLSM). Rhodamine B is used as a fluorescent probe to confirm the existence of the vesicle with an aqueous interior. The vesicle size is in the range 0.55-6 mu m, depending on the absolute and relative lengths of the two blocks, on initial polymer concentration, and on solution pH. The vesicles are still stable in water for 2 months after preparation. Addition of the copolymer to DNA solution results in complex formation with it. The complex assumes the morphology of irregular particles of less than 2 mu m. It is expected to be used in drug and gene delivery.