68 resultados para atmospheric pressure plasma
Resumo:
Removal of NO by a continuous microwave discharge at atmospheric pressure with the addition of CH4 is reported. The conversion of NO to N-2 is approximately 80%, and the energy efficiency is up to 0.55 g-NO/kWh. The effects of CH4 addition and three discharge modes on NO conversion and energy efficiency are investigated. The dependence of NO conversion on experimental time is also observed.
Resumo:
The polymer-supported bimetallic catalyst FVP-PdCl2-2CuCl(2) (PVP, poly(N-vinyl-2-pyrrolidone), obtained in situ by the addition of CuCl2 to an alcoholic solution of PVP-PdCl2, exhibits high selectivity and activity for the oxidative carbonylation of aniline with carbon monoxide and oxygen to ethyl N-phenylcarbamate in the presence of a base (NaOAc) under atmospheric pressure. The strong synergic effect of Pd-Cu gives rise to a clear increase in the selectivity and activity. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Two series of sulfided Ni or Co promoted Mo/alumina catalysts, having different Ni or Co loadings, were characterized by their activities for the transformation of cyclopentanone into cyclopentanethiol (flow reactor, 220 degrees C, atmospheric pressure) and for the hydrodesulfurization of dibenzothiophene (flow reactor, 340 degrees C, 3 MPa hydrogen pressure). The addition of the promoter increased significantly the activity of the Mo/alumina catalyst for both reactions, up to a maximum obtained with the catalysts having a (promoter)/(promoter+Mo) molar ratio equal to 0.3-0.4. This increase in activity was due in part to an increase in the hydrogenating properties of the Mo/alumina catalyst. However, an additional modification of the catalyst (basic and nucleophilic properties) must be considered to account for the spectacular effect of the promoter on the rate of the dibenzothiophene direct desulfurization reaction. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
An in-situ modified sol-gel method for the preparation of a Ni-based monolith-supported catalyst is reported. With the presence of a proper amount of plasticizer and binder, and at an optimized pH value, the stable boehmite sol was modified with metal ions (Ni, Li, La) successfully without distinct growth of the particle size. Monolith-supported Ni-based/gamma-Al2O3 catalysts were obtained using the modified sol as the coating medium with several cycles of dip-coating and calcination. Combined BET, SEM-EDS, XRD and H-2-TPR investigations demonstrated that the derived monolith catalysts had a high specific surface area, a relatively homogeneous surface composition, and a high extent of interaction between the active component and the support. These catalysts showed relatively stable catalytic activities for partial oxidation of methane (POM) to syngas under atmospheric pressure. The monolith catalysts prepared by this sol-gel method also demonstrated an improved resistance to sintering and loss of the active component during the reaction process.
Resumo:
The polymer-supported bimetallic catalyst PVP-PdCl2-MnCl2 (PVP=poly(N-vinyl-2-pyrrolidone)) exhibits high activity and selectivity for the oxidative carbonylation of amines with carbon monoxide and oxygen to carbamate esters under atmospheric pressure in the presence of a base (NaOAc). This catalyst is prepared by the addition of MnCl2 to the alcoholic solution of PVP-PdCl2 in situ. A remarkable bimetallic synergic effect and the role of PVP in PVP-PdCl2-MXn (MXn=the second transition metal component such as NiCl2, CoCl2, MnCl2 and FeCl3) gives rise to an obvious increase in the conversion and selectivity for the reaction. Among the second metal components tested, Mn-Pd exerts the strongest synergic effect. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Highly reactive magnesium powder of nanometric size, which was generated by the thermal decomposition of magnesium anthracene . 3THF under vacuum, can react with N-2 under atmospheric pressure, even at 300 degrees C, to form magnesium nitride. The rate and extent of the reaction can be improved effectively by doping the magnesium powder with a small amount of nickel or titanium compounds.
Resumo:
Size-controllable tin oxide nanoparticles are prepared by heating ethylene glycol solutions containing SnCl2 at atmospheric pressure. The particles were characterized by means of transmission electron microscopic (TEM), X-ray diffraction (XRD) studies. TEM micrographs show that the obtained material are spherical nanoparticles, the size and size distribution of which depends on the initial experimental conditions of pH value, reaction time, water concentration, and tin precursor concentration. The XRD pattern result shows that the obtained powder is SnO2 with tetragonal crystalline structure. On the basis of UV/vis and FTIR characterization, the formation mechanism of SnO2 nanoparticles is deduced. Moreover, the SnO2 nanoparticles were employed to synthesize carbon-supported PtSnO2 catalyst, and it exhibits surprisingly high promoting catalytic activity for ethanol electrooxidation.
Resumo:
2-Benzoxazolones or 2-benzimidazolones are synthesized in moderate to good yields in the presence of a base (KOH, NaOH, KOAc, NEt3, DBU) at atmospheric pressure or under a high pressure of CO by one-pot reductive carbonylation of 2-nitrophenols or 2-nitroanihne in the presence of selenium as catalyst. Besides the effect of base, the effects of solvent and temperature on the reaction were investigated at high or atmospheric pressure. Contrasting results were obtained for 2-benzoxazolones or 2-benzimidazolone at high and atmospheric pressures. Moreover, phase-transfer catalysis was exhibited. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005).