74 resultados para after heat shock


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wall pressure fluctuations and surface heat transfer signals have been measured in the hypersonic turbulent boundary layer over a number of compression-corner models. The distributions of the separation shock oscillation frequencies and periods have been calculated using a conditional sampling algorithm. In all cases the oscillation frequency distributions are of broad band, but the most probable frequencies are low. The VITA method is used for deducing large scale disturbances at the wall in the incoming boundary layer and the separated flow region. The results at present showed the existence of coherent structures in the two regions. The zero-cross frequencies of the large scale structures in the two regions are of the same order as that of the separation shock oscillation. The average amplitude of the large scale structures in the separated region is much higher than that in the incoming boundary layer. The length scale of the separation shock motion region is found to increase with the disturbance strength. The results show that the shock oscillation is of inherent nature in the shock wave/turbulent boundary layer interaction with separation. The shock oscillation is considered to be the consequence of the coherent structures in the separated region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, torsion fracture behavior of drawn pearlitic steel wires with different heat treatments was investigated. Samples with different heat treatments was investigated. Samples with different heat treatment conditions were subjected to torsion and tensile tests. The shear strain along the torsion sample after fracture was measured. Fracture surface of wires was examined by Scanning Electron Microscopy. In addition, the method of Differential Scanning Calorimetry was used to characterize the thermodynamic process in the heat treatment. A numerical simulation via finite element method on temperature field evolution for the wire during heat treatment process was performed. The results show that both strain aging and recovery process occur in the material within the temperature range between room temperature and 435 degrees C. It was shown that the ductility measured by the number of twists drops at short heating times and recovers after further heating in the lead bath of 435 degrees C. On the other hand, the strenght of the wire increases at short heating times and decreases after further heating. The microstructure inhomogeneity due to short period of heat treatment, coupled with the gradient characteristics of shear deformation during torsion results in localized shear deformation of the wire. In this situation, shear cracks nucleate between lamella and the wire breaks with low number of twists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The materials considered in our analysis were ZrB2 ceramic matrix composites. Effect of two different additives (graphite and AlN) on thermal shock stability for the materials was measured by water quench test. It showed that it may provide more stable thermal shock properties with additives of graphite. It was explained by different thermal properties and crack resistance of the two materials in detail. Surface oxidation was one of main reasons for strength degradation of ceramic with additives of graphite after quenched in water, and surface crack was one of main reasons for strength degradation of ceramic with additives of AlN after quenched in water. It was presented that it was a potential method for improving thermal shock stability of ZrB2 ceramic matrix composites by introducing proper quantities of graphite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new type of sensor with the flexible substrate is introduced. It is applicable in measuring instantaneous heat flux on the model surface in a hypersonic shock tunnel. The working principle, structure and manufacture process of the sensor are presented. The substrate thickness and the dynamic response parameter of the sensor are calculated. Because this sensor was successfully used in measuring the instantaneous heat flux on the surface of a flat plate in a detonation-driven shock tunnel, it may be effective in measuring instantaneous heat flux on the model surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The steady two-dimensional Navier-Stokes equations with the slip wall boundary conditions were used to simulate the supersonic flow in micro convergent-divergent nozzles. It is observed that shock waves can take place inside or outside of the micronozzles under the earth environment. For the over-expanded flows, there is a boundary layer separation point, downstream of which a wave interface separates the viscous boundary layer with back air flow and the inviscid core flow. The oblique shock wave is followed by the bow shock and shock diamond. The viscous boundary layer thickness relative to the whole nozzle width on the exit plane is increased but attains the maximum value around of 0.5 and oscillates against this value with the continuous increasing of the nozzle upstream pressures. The viscous effect either changes the normal shock waves outside of the nozzle for the inviscid flow to the oblique shock waves inside the nozzle, or transfers the expansion jet flow without shock waves for the inviscid flow to the oblique shock waves outside of the nozzle. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crack patterns generated in a real ceramic plate and in a plate stacked by ceramic slabs under quenching are experimentally studied. The results here reveal that there are some distinct differences between the two crack patterns. The reasons that caused the differences are the size and boundary effects of the slabs. These crack patterns are very useful to understand the failure mechanisms of ceramic materials in thermal shock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A critical Biot number, which determines both the sensitivity of spherical ceramics to quenching and the durations of the temperature-wave propagation and the thermal stresses in the ceramics subjected to thermal shock, is theoretically obtained. The results prove that once the Biot number of a ceramic sphere is greater than the critical number, its thermal shock failure will be such a rapid process that the failure only occurs in the initial regime of heat conduction, whereas the thermal shock failure of the ceramic sphere is uncertain in the course of heat conduction. The presented results provide a guide to the selection of the ceramics applied in the thermostructural engineering with thermal shock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose here a new method to make ceramics insensitive to thermal shock up to their melting temperature. In this method the surface of ceramics was biomimetically roughened into nanofinned surface that creates a thin air layer enveloping the surface of the ceramics during quenching. This air layer increases the heat transfer resistance of the surface of the ceramics by about 10 000 times so that the strong thermal gradient and stresses produced by the steep temperature difference in thermal shock did not occur both on the actual surface and in the interior of the ceramics. This method effectively extends the applications of existing ceramics in the extreme thermal environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical simulations of the multi-shock interactions observable around hypersonic vehicles were carried out by solving Navier-Stokes equations with the AUSMPW scheme and the new type of the IV interaction created by two incident shock waves was investigated in detail. Numerical results show that the intersection point of the second incident shock with the bow shock plays important role on the flow pattern, peak pressures and heat fluxes. In the case of two incident shocks interacting with the bow shock at the same position, the much higher peak pressure and more severe heat transfer rate are induced than the classical IV interaction. The phenomenon is referred to as the multi-shock interaction and higher requirements will be imposed on thermal protection systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modeling study is conducted to investigate the effect of hydrogen content in propellants on the plasma flow, heat transfer and energy conversion characteristics of low-power (kW class) arc-heated hydrogen/nitrogen thrusters (arcjets). 1:0 (pure hydrogen), 3:1 (to simulate decomposed ammonia), 2:1 (to simulate decomposed hydrazine) and 0:1 (pure nitrogen) hydrogen/nitrogen mixtures are chosen as the propellants. Both the gas flow region inside the thruster nozzle and the anode-nozzle wall are included in the computational domain in order to better treat the conjugate heat transfer between the gas flow region and the solid wall region. The axial variations of the enthalpy flux, kinetic energy flux, directed kinetic-energy flux, and momentum flux, all normalized to the mass flow rate of the propellant, are used to investigate the energy conversion process inside the thruster nozzle. The modeling results show that the values of the arc voltage, the gas axial-velocity at the thruster exit, and the specific impulse of the arcjet thruster all increase with increasing hydrogen content in the propellant, but the gas temperature at the nitrogen thruster exit is significantly higher than that for other three propellants. The flow, heat transfer, and energy conversion processes taking place in the thruster nozzle have some common features for all the four propellants. The propellant is heated mainly in the near-cathode and constrictor region, accompanied with a rapid increase of the enthalpy flux, and after achieving its maximum value, the enthalpy flux decreases appreciably due to the conversion of gas internal energy into its kinetic energy in the divergent segment of the thruster nozzle. The kinetic energy flux, directed kinetic energy flux and momentum flux also increase at first due to the arc heating and the thermodynamic expansion, assume their maximum inside the nozzle and then decrease gradually as the propellant flows toward the thruster exit. It is found that a large energy loss (31-52%) occurs in the thruster nozzle due to the heat transfer to the nozzle wall and too long nozzle is not necessary. Modeling results for the NASA 1-kW class arcjet thruster with hydrogen or decomposed hydrazine as the propellant are found to compare favorably with available experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lanthanide hexaaluminates including LaMgAl11O19, NdMgAl11O19, SmMgAl11O19 and GdMgAl11O19 were synthesized via Sol-Gel method. Due to the anisotropic crystal growth, these oxides crystallize in the form of platelets and the platelet thickness increases with the decrease of rare-earth ionic radius. It was observed that the thermal-shock resistances of LaMgAl11O19, NdMgAl11O19 and SmMgAl11O19 oxides were superior to 8YSZ as proved by water quenching tests. In addition, the thinner the platelet. the more interstices are retained in the sintered specimen, and the better thermal-shock resistance the oxide has. Based on SEM images, it can be seen that the SmMgAl11O19 sample exhibits a mixture of the intergranular and transgranular fracture after thermal cycling failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The melt flow behaviour of LDPE/HDPE blends with various compositions have been determined by melt flow index (MFI) measurement. The effects of stabilizers, photo-sensitizers, multiple extrusions and short-term photooxidation have been studied. The results show that there is no marked thermal stability difference between homopolymers and blends without multiple extrusions, no matter whether stabilizers or photo-sensitizers are added. Multiple extrusions or photo-sensitizers reduce their thermal stability, shown by the decrease in MFI. The decrease in MFI of photooxidized samples does not imply serious structural change and shows that the active species formed during photooxidation induce a crosslinking reaction in the melt indexer. Multiple extrusions increase the number of active species formed in LDPE or blends and lead to an obvious decrease in MFI. It is suggested that LDPE and LDPE-rich blends after short-term photooxidation can be characterized by MFI measurement. In contrast, HDPE cannot be characterized by this method due to its linear structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large yellow croaker, Pseudosciaena crocea, exhibit sexually dimorphic growth, with females growing faster and reaching larger adult sizes than males. Thus, development of techniques for preferentially producing females is necessary to optimize production of these species. We have established a protocol to produce all-female croaker P. crocea through induction of meiotic gynogenesis with homologous sperm. The first set of experiments investigated the ultra-violet (UV) irradiation on sperm motility and duration of sperm activity to determine the optimal UV dosage for genetic inactivation of sperm, yet retaining adequate motility for activation of eggs. Milt from several males was diluted 1: 100 with Ringer's solution and UV irradiated with doses ranging from 0-150 J cm (-2). The results indicated that motility and duration of activity generally decreased with increased UV doses. At UV doses greater than 105 J cm(-2), after fertilization, motility was < 10% and fertilization rates were significantly lower. Highest hatching rate was obtained at 75 J cm -2. A second set of experiments was carried out to determine appropriate conditions of cold shock for retention of the 2nd polar body in P. crocea eggs after fertilization with UV-inactivated sperm by altering the timing, temperature and duration of shock. At 208 degrees C, shock applied at 3 min after fertilization resulted in higher survival rate of larvae at 6 h after hatching. Results of different combinations of three shock temperatures ( 28 degrees C, 38 degrees C or 48 degrees C) and five shock durations ( 4 min, 8 min, 12 min, 16 min or 20 min) at 3 min after fertilization demonstrated that shocks of 12 min gave highest production of diploid gynogens. Statistical analysis revealed that maximum production of diploid gynogens (44.55 +/- 2.99%) were obtained at 38 degrees C. The results of this study indicate that the use of UV-irradiated homologous sperm for activation of P. crocea eggs and cold shock for polar body retention is an effective method for producing gynogenetic offspring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytological changes and subsequent mitotic processes were studied in gynogenetically activated eggs of olive flounder subjected to cold-shock treatment using indirect immunofluorescence staining of isolated blastodisks. Obvious differences between controls and treated eggs were detected during early cell division. The developmental process of haploid control was similar to that of the diploid control except several minutes delayed. Spindles disassembled by the cold-shock treatment regenerated soon after treatment, resulting in the occurrence of the first mitosis. The immature daughter centriole was easily depolymerized by cold-shock treatment, leading to the formation of the bipolar spindle in the first cell cycle and the formation of the monopolar spindle in the second cell cycle, resulting in chromosome set doubling. Some two-cell stage eggs had a monopolar spindle in one blastomere and a bipolar spindle in another during the second mitosis. These eggs had a high potency developing into haploid-diploid mosaics. To the best of our knowledge, this study is the first to clarify the mechanism of chromosome set doubling in marine fishes and provides a preliminary cytological basis for developing a reliable and efficient protocol for mitotic gynogenesis induction by cold-shock treatment in olive flounder.