217 resultados para acrylonitrile butadiene rubber
Resumo:
The fracture behavior of ABS materials with a particle diameter of 110 nm and of 330 nm was studied using instrumented Charpy impact tests. The effects of rubber content and temperature on fracture behavior, deformation mode, stable crack extension, plastic zone size, J-integral value, and crack opening displacement were investigated. In the case of a particle size of 110 nm, the material was found to break in a brittle manner, and the dominant crack mechanism was unstable crack propagation. Fracture toughness increases with increasing rubber content. In the case of a particle size of 330 nm, brittle-to-tough transition was observed. The J-integral value first increases with rubber content, then levels off after the rubber content is greater than 16 wt %. The J-integral value of a particle diameter of 330 nm was found to be much greater than that of 110 nm. The J-integral value of both series first increased with increasing temperature until reaching the maximum value, after which it decreased with further increasing temperature. The conclusion is that a particle diameter of 330 nm is more efficient than that of 110 nm in toughening, but for both series the effectiveness of rubber modification decreases with increasing temperatures higher than 40 degreesC because of intrinsic craze formation in the SAN matrix at temperatures near the glass transition of SAN. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The surface structure of the ring-banded spherulites in polymer blends PCL/SAN (90/10) was studied by optical microscopy, SEM, and TEM, respectively. It is interesting to find that the surface structure of the ring-banded spherulites in polymer blends PCL/SAN (90/10) is made up of the convex bands. The landscape of the convex bands on the surface has been little emphasized before. Radial fibrils are arranged on the bands. Details of the radial fibrils on the bands can be observed by TEM. The landscape of the convex bands on the surface and twisting of lamellae in the convex bands for PCL/SAN blends may be useful to explain the formation mechanism of the ring banded spherulites in polymer blends or even in homopolymers. (C) 1999 John Wiley & Sons, Inc.
Resumo:
By mechanism-transformation (anionic --> cationic) polymerization, diblock copolymer of butadiene and 2-ethyl-2-oxazoline (PBd-b-PEOx) was synthesized in two steps. The first step is the polymerization of butadiene block capped with ethylene oxide and its tosylation; the second step is the cationic ring-opening polymerization of 2-ethyl-2-oxazoline. The products were characterized by various methods, such as IR, (HNMR)-H-1, DMA, TEM and SAXS. The results show that the obtained copolymers possess high molecular weight and narrow molecular weighs distribution, and that the content of 1,4-structure was controllable.
Resumo:
Novel morphology of ring-banded spherulites in the surface of poly(epsilon-caprolactone)/poly(styrene-co-acrylonitrile) (PCL/SAN) blends was discovered and studied by SEM and TEM. The ring-banded spherulites separate into those exhibiting a very dark contrast, of relatively regular bundles of lamellae and others appearing with a much brighter intensity, of a coarse and irregular aggregates of lamellae. The origin of the novel morphology is not due to different crystalline structures as in the case of isotactic polypropylene because only one crystal structure exists in PCL/SAN blends. The formation may reflect whether spherulites in PCL/SAN blends are nucleated at the bottom surface or at the top (free) surface.
Resumo:
Ring-banded spherulites in crystallization of poly(epsilon-caprolactone) and poly (styrene-random-acrylonitrile) blends were observed with polarizing optical microscopy and digital image analysis technique was applied directly to the image obtained by polarizing microscope, Several new interesting phenomena were found. One is that the ring-banded structure is still clearly seen after the analyzer was removed and this astonished phenomenon couldn't result from the general concept about formation mechanism of ring-banded spherulite - lamellae twisting, Another one is that there is a slight, dark line in the bright band when cross polars were added, which may be related to the formation process and mechanism of ring-banded spherulites in the blends of poly (epsilon-caprolactone) and poly (styrene-random-acrylonitrile).
Resumo:
Blends of nylon-6 and epoxidised ethylene propylene diene (eEPDM) rubber were prepared through reactive mixing. It is found that the toughness of nylon-6 can be much improved by this method, and that the particle size of eEPDM is much smaller than that of unexpoxidised EPDM (uEPDM) rubber in a nylon-6 matrix. This indicates that the epoxy group in eEPDM could react with a nylon-6 end group to form a graft copolymer which could act as an interfacial compatibiliser between the nylon-6 and the eEPDM rubber dispersed phase. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The isothermal crystallization process of a PCL/SAN blend (90/10 wt.-%) was investigated by using real time image analysis and hot stage optical microscopy. It was found that the growth rate of ring-banded spherulites in the isothermal crystallization process is not constant. Slow growth occurs in the bright bands, while fast growth is found in the dark bands. The radially unequal growth rate of ring-banded spherulites in PCL/SAN blends may be related to the convex band structure on the surface. This new discovery gives us the idea that rhythmic growth is effective in the growth process of ring banded spherulites.
Resumo:
Compatibilization of blends of polybutadiene and poly(methyl methacrylate) with butadiene-methyl methacrylate diblock copolymers has been investigated by transmission electron microscopy. When the diblock copolymers are added to the blends, the size of PB particles decreases and their size distribution gets narrower. In PB/PMMA7.6K blends with P(B-b-MMA)25.2K as a compatibilizer, most of micelles exist in the PMMA phase. However, using P(B-b-MMA)38K as a compatibilizer, the micellar aggregation exists in PB particles besides that existing in the PMMA phase. The core of a micelle in the PMMA phase is about 10 nm. In this article the influences of temperature and homo-PMMA molecular weight on compatibilization were also examined. At a high temperature PB particles in blends tend to agglomerate into bigger particles. When the molecular weight of PMMA is close to that of the corresponding block of the copolymer, the best compatibilization result would be achieved. (C) 1998 John Wiley & Sons, Inc.
Resumo:
The ligand effects of acrylonitrile, EtOH, DMF and DMSO on the electrochemical oxidation reactions of (OEP)Co were investigated by CV monitored electrochemical titration and in - situ thin - layer spectroelectrochemical method. The formation constants of (OEP)Co(III) with these molecules were calculated. The magnitude of the values shows the order of acrylonitrile
Resumo:
A super-tough polycarbonate (PC) blend was obtained by using epoxidized ethylene propylene diene (eEPDM) rubber as modifier. The notched Izod impact strength of PC/eEPDM (96/4) blend shows a great improvement, with a value about 25 times of that of pure PC. Finely and homogeneously dispersed rubber particles (0.2-0.8 mu m) in the PC matrix indicated good adhesion between the eEPDM rubber phase and the PC matrix. (C) 1997 Elsevier Science Ltd.
Resumo:
Isothermal crystallization kinetics in the miscible mixtures of poly(epsilon-caprolactone) (PCL) and poly(styrene-co-acrylonitrile) (SAN) have been investigated as a function of the composition and the crystallization temperature by optical microscopy. The radial growth rates of the spherulites have been described by a kinetic equation including the interaction parameter and the free energy for the formation of secondary crystal nuclei. Fold surface free energies decrease slightly with the increase of SAN content. The experimental findings show that the influence of the glass transition temperature of the mixture, which is related to the chain mobility, on the rate of crystallization predominates over the influence of the surface free energies. This indicates that the glass transition temperature of the mixture should be of more importance, so that the growth rates decrease when the content of the noncrystallizable component increases. In addition, the Flory-Huggins interaction parameter obtained by fitting the kinetic equation with experimental data is questionable.
Resumo:
Ring-banded spherulites in polymer blends of poly(epsilon-caprolactone) (PCL) and poly(styrene-co-acrylonitrile) (SAN) were investigated by optical microscopy equipped with a digital image analysis system. PCL/SAN blends exhibit not only spherulites with a Maltese cross, but also distinct extinction rings. The periodic distance of rings changes with blend ratio and crystallization temperature and was plotted as a function of the undercooling and overall mobility of the mixtures, respectively. It was found that the overall mobility of chain segments in the mixtures could be mainly attributed to the origin of the formation of ring-banded spherulites. It was believed that for the first time a quantitative experimental result was obtained about the relationship of periodic distance of rings and the overall mobility of the mixtures. This relationship may be useful to explain the formation mechanism of ring-banded spherulites in polymer blends or even in homopolymers in the future. (C) 1977 Elsevier Science Ltd.
Resumo:
In this paper, epoxidation of ethylene propylene diene rubber by in situ generated performic acid is discussed. The samples have been characterized by infra-red and H-1-nuclear magnetic resonance analyses. Quantitative analysis of the reaction products is made possible by using the methyl deformation band at 1377 cm(-1) as internal standard. The conversion of double bonds increases rapidly within the first 1 h, then gradually, over 2 h, has only a slight increase. The maximum conversion ratio of double bonds is about 70%. The relative content of epoxy groups has a top value at about 7 h. The side reactions are also discussed. (C) 1997 Elsevier Science Ltd.
Resumo:
A series of acrylonitrile (AN) copolymers with methyl acrylate (MA) or ethyl acrylate (EA) as comonomer (5-23 wt%) was prepared by free-radical copolymerisation. The permeability coefficients of the copolymers to oxygen and carbon dioxide were measured at 1.0 MPa and at 30 degrees C, and those to water vapor also measured at 100% relative humidity and at 30 degrees C. All the AN/acrylic copolymers are semicrystalline. As the acrylate content increase, the permeability coefficients of the copolymers to oxygen and carbon dioxide are increased progressively, but those to water vapor are decreased progressively. The gas permeability coefficients of the polymers were correlated with free-volume fractions or the ratio of free volume to cohesive energy.
Resumo:
In this paper, unepoxidized ethylene propylene diene rubber (uEPDM) was first epoxidized with formic acid and H2O2, and then the epoxidized ethylene propylene diene rubber (eEPDM) was melt-mixed with PET resin in a Brabender-like apparatus. Toughening of PET matrix was achieved by this method. The dispersion of rubber particles and phase structure of the blends were also observed by SEM. It has been suggested that the epoxy groups in the eEPDM could react with PET end groups to form a graft copolymer which could act as an interfacial compatibilizer between the PBT matrix and eEPDM rubber dispersed phase. This is beneficial to the improvement of the impact performance of PBT. (C) 1997 Elsevier Science Ltd.