191 resultados para Zone de convection
Resumo:
The oscillatory behaviour of the Rayleigh-Marangoni-Bénard convective instability (R-M-B instability) regarding two combinations of two-layer fluid systems has been investigated theoretically and numerically. For the two-layer system of Silicone oil (10cSt) over Fluorinert (FC70), both linear instability analysis and 2D numerical simulation show that the instability of the system depends strongly on the depth ratio Hr = H1/H2 of the two-layer liquid. The oscillatory regime at the onset of R-M-B convection enlarges with reducing Γ = Ra/Ma values. In the two-layer system of Silicone oil (2cSt) over water, it loses its stability and onsets to steady convection at first, then the steady convection bifurcates to oscillatory convection with increasing Rayleigh number Ra. This behaviour was found through numerical simulation above the onset of steady convection in the case of r = 2.9, ε=(Ra-Ruc)/Rac = 1.0, and Hr = 0.5. Our findings are different from the previous study of the Rayleigh-Benard instability and show the strong effects of the thermocapillary force at the interface on the time-dependent oscillations at or after the onset of convection. We propose a secondary oscillatory instability mechanism to explain the experimental observation of Degen et al. [Phys. Rev. E, 57 (1998), 6647-6659].
Resumo:
Until quite recently our understanding of the basic mechanical process responsible for earthquakes and faulting was not well known. It can be argued that this was partly a consequence of the complex nature of fracture in crust and in part because evidence of brittle phenomena in the natural laboratory of the earth is often obliterated or obscured by other geological processes. While it is well understood that the spatial and temporal complexity of earthquakes and the fault structures emerge from geometrical and material built-in heterogeneities, one important open question is how the shearing becomes localized into a band of intense fractures. Here the authors address these questions through a numerical approach of a tectonic plate by considering rockmass heterogeneity both in microscopic scale and in mesoscopic scale. Numerical simulations of the progressive failure leading to collapse under long-range slow driving forces in the far-field show earthquake-like rupture behavior. $En Echelon$ crack-arrays are reproduced in the numerical simulation. It is demonstrated that the underlying fracturing induced acoustic emissions (or seismic events) display self-organized criticality------from disorder to order. The seismic cycles and the geometric structures of the fracture faces, which are found greatly depending on the material heterogeneity (especially on the macroscopic scale), agree with that observed experimentally in real brittle materials. It is concluded that in order to predict a main shock, one must have extremely detailed knowledge on very minor features of the earth's crust far from the place where the earthquake originated. If correct, the model proposed here seemingly provides an explanation as to why earthquakes to date are not predicted so successfully. The reason is not that the authors do not understand earthquake mechanisms very well but that they still know little about our earth's crust.
Resumo:
An optical diagnostic system consisting of the Michelson interferometer with the image processor has been developed for the study of the kinetics of the thermal capillary convection. The capillary convection, surface deformation, surface wave and the velocity field in a rectangular cavity with different temperature's sidewalls have been investigated by optical interference method and PIV technique. In order to calculate the surface deformation from the interference fringe, Fourier transformation is used to grating analysis. The quantitative results of the surface deformation and surface wave have been calculated from the interference fringe pattern.
Resumo:
An optical diagnostic system consisting of the Mach-Zehnder interferometer with the phase shift device and an image processor has been developed for the study of the kinetics of the crystal growing process. The dissolution and crystallization process of NaClO3 crystal has been investigated. The concentration distributions around a growing and dissolving crystal have been obtained by using phase-shift of four-steps theory for the interpretation of the interferograms. The convection (a plume flow) has been visualized and analyzed in the process of the crystal growth. The experiment demonstrates that the buoyancy convection dominates the growth rate of the crystal growing face on the ground-based experiment.
Resumo:
An experimental investigation of Benard-Marangoni convection has been performed in double immiscible liquid layers of rectangular configuration. The two kinds of liquid are 10cst silicon oil and FC-70 respectively. The velocity fields in the vertical cross-section are obtained by PIV. Flow patterns and/or temperature distributions on the horizontal interface are displayed by using thermal color liquid crystal (TLC), and the velocity distributions on the interface were also obtained with the help of the serial particle image of TCL. The evolution processes of convection are observed in the differential thickness ratio of two liquid layers, and the convection styles are discussed.
Resumo:
The Rayleigh–Marangoni–Bénard convective instability (R–M–B instability) in the two-layer systems such as Silicone oil (10cSt)/Fluorinert (FC70) and Silicone oil (2cSt)/water liquids are studied. Both linear instability analysis and nonlinear instability analysis (2D numerical simulation) were performed to study the influence of thermocapillary force on the convective instability of the two-layer system. The results show the strong effects of thermocapillary force at the interface on the time-dependent oscillations at the onset of instability convection. The secondary instability phenomenon found in the real two-layer system of Silicone oil over water could explain the difference in the comparison of the Degen’s experimental observation with the previous linear stability analysis results of Renardy et al.
Resumo:
A remarkably increased coagulation rate for 2-mu m PS spheres was previously reported for a perikinetic coagulation experiment performed under microgravity conditions (1998, R. Folkersma, A. J. G. van Diemen, and H. N. Stein, J. Colloid Interface Sci. 206, 482); from this experiment, it was assumed that the leading factor slowing the coagulation process under normal gravitation was free convection due to gravity (1998, R. Folkersma, and H. N. Stein, J. Colloid Interface Sci. 206, 494). To test the influence of free convection as a single-effect factor on the coagulation process, a ground-based experiment was constructed. The coagulation rate of 2-mu m PS spheres dispersed in water was determined by measuring the turbidity of the dispersion solution while convection-driven flows in the solution were checked with a visual magnification system. We found that it was possible to cease free convection-driven particle flows on the ground, as long as the experiments were carefully operated. The strength of convection was controlled by changing the temperature gradient applied to the sample cell. By monitoring both the coagulation rate and convection-driven flows simultaneously, our experiments showed that weak free convection (maximum speed <150 mu m/s) actually has negligible effects on the coagulation rate.
Resumo:
Free surface deformation is one of the most important physical phenomena in fluids with free surface. In the present paper, convection and surface deformation caused by thermocapillary effect in a rectangular cavity were investigated. In ground experiments, the convection was also affected by gravity. The cavity has a horizontal cross section of 52mm×42mm and the thikkness of the liquid layer is 4mm. Temperature difference between two sides of the liquid layer was increased gradually, and the flow in liquid layer will develop from steady to unstable convection. An optical diagnostic system consisting of a revised Michelson interferometer with image processor was developed to study fluid surface deformation in convection, and the displacements of free surface oscillation were determined. PIV technique was adopted to observe the evolution of flow pattern, and the velocity fields were obtained quantitatively. The present experiments demonstrate that surface deformation is quite distinct in buoyant-thermocapillary convection. in order to understand the mechanism of buoyant-thermocapillary convection, not only the hydrothermal wave instability but also the surface wave instability should be discussed.
Resumo:
Classical theories have successfully provided an explanation for convection in a liquid layer heated from below without evaporation. However, these theories are inadequate to account for the convective instabilities in an evaporating liquid layer, especially in the case when it is cooled from below. In the present paper, we study the onset of Marangoni convection in a liquid layer being overlain by a vapor layer.A new two-sided model is put forward instead of the one-sided model in previous studies. Marangoni-Bénard instabilities in evaporating liquid thin layers are investigated with a linear instability analysis. We define a new evaporation Biot number, which is different from that in previous studies and discuss the influences of reference evaporating velocity and evaporation Biot number on the vapor-liquid system. At the end, we explain why the instability occurs even when an evaporating liquid layer is cooled from below.
Resumo:
由于采用非均匀布风,内旋流流化床的移动区空气量不足,导致燃烧不充分,温度较低。当移动区未流化时,密相区内存在较明显的温度不均匀性。随着移动区流速的提高,温度差迅速减小。当移动区流速超过2.0#mu#m后,密相区温度基本均匀一致。流动区流速对密相区温度均匀有一定的影响,流速越高,温度越均匀。
Resumo:
It was assumed [1, 2] that gravity affects the coagulation process in two ways: free convection, which is hard to be avoided on the ground and sedimentation, which can be greatly reduced by the density-matching method. We present a ground-based experiment set-up to study the influence of convection on the perikinetic coagulation for aqueous polystyrene (PS) dispersions. The turbidity measurement was used to evaluate the relative coagulation rate and convection-driven flows in the solution were checked with a visual-magnification system. The pattern of flow field temperature profile in the sample cell is given. Our experiments show that there was no noticeable difference of coagulation rate observed no matter whether convection flows exist (with the flow speed up to 180 mu m/s) or not.
Resumo:
The hydrothermal wave was investigated numerically for large-Prandtl-number fluid (Pr = 105.6) in a shallow cavity with different heated sidewalls. The traveling wave appears and propagates in the direction opposite to the surface flow (upstream) in the case of zero gravity when the applied temperature difference grows and over the critical value. The phase relationships of the disturbed velocity, temperature and pressure demonstrate that the traveling wave is driven by the disturbed temperature, which is named hydrothermal wave. The hydrothermal wave is so weak that the oscillatory flow field and temperature distribution can hardly be observed in the liquid layer. The exciting mechanism of hydrothermal wave is analyzed and discussed in the present paper.
Resumo:
The coupling mechanism of Rayleigh effect and Marangoni effect in a liquid-porous system is investigated using a linear stability analysis. The eigenvalue problem is solved by means of a Chebyshev tau method. Results indicate that there are three coupling modes between the Rayleigh effect and the Marangoni effect for different depth ratios. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Thermocapillary convection coupling with the evaporation effect of evaporating liquids is studied experimentally. This study focused on an evaporation liquid layer in a rectangular cavity subjected to a horizontal temperature gradient when the top evaporating surface is open to air, while most previous works only studied pure thermocapillary convection without evaporation. Two liquids with different evaporating rates are used to study the coupling of evaporation and thermocapillary convection, and the interfacial temperature profiles for different temperature gradients are measured. The experimental results indicate evidently the influence of evaporation effect on the thermocapillary convection and interfacial temperature profiles. The steady multicellular flow and the oscillatory multicellular flow in the evaporation liquid layer are observed by using the particle-image-velocimetry method.
Resumo:
The Pearson instability was suggested to discuss the onset of Marangoni convection in a liquid layer of large Prandtl number under an applied temperature difference perpendicular to the free surface in the microgravity environment. In this case, the temperature distribution on the curved free surface is nonuniform, and the thermocapillary convection is induced and coupled with the Marangoni convection. In the present paper the effect of volume ratio of the liquid layer on the critical Marangoni convection and the corresponding spatial variation of the convection structure in zero-gravity condition were numerically investigated by two-dimensional model. (C) 2008 Elsevier Ltd. All rights reserved.