68 resultados para Ubiquitin promoter


Relevância:

10.00% 10.00%

Publicador:

Resumo:

聚 3 一控基丁酸酯 (Poly – 3 - hydroxybutyrate,PHB) 及其它类型的聚 3-泾基链烷酸醋同属于聚酯类物质 , 是自然界中多种细菌的碳源及能源储备物。这种聚酯的物理化学特性与传统塑料相似 , 并具有生物可降解性 , 如能取代化学合成塑料将减少环境中的塑料废弃物 , 从源头治理 " 白色污染 " 问题。微生物发酵法生产的 PHB 价格过高 , 无法在市场上与化学合成塑料竞争。随着分子生物学的发展 , 人们逐渐将视线转向植物生物反应器。转基因植物能够利用二氧化碳为碳源、太阳能为能源合成目的产物 , 大大降低生产成本 , 为生产具有市场 竞争力的新型生物可降解塑料提供可行途径。在此领域虽然己取得一定进展 , 但远未达到商业化生产水平。大规模商业化生产要求转基因植物能够在确保环 境安全性的前提下高效、稳定地生产 PHB 。本文尝试改善植物中 PHB 的生产体系 ,为环保型塑料早日进入市场作出努力。 1. 由于表达框架中多次使用同一启动子会导致基因沉默 , 本文克隆了另一 种子特异性启动子 nap300, 以替换重复使用的7S启动子,减轻“共抑制”。将 nap300 与 GUS 基因相连进行功能鉴定。荧光检测和组织化学染色的结果都证明此仅 30Obp 的 DNA 序列足以调控基因进行种子特异性表达。尽管 B 盒作为 高度保守区在种子特异性表达中起重要作用 , 位于此处的两个碱基替代型突变 并未使 nap300 的活性明显降低 , 对启动子的时空表达模式也无明显影响。将 nap300 、 7S 分别与 phbA 基因 ( 编码 3-酮硫裂解酶) 相连 , 在相似表达环境中 对二者功能进行比较 , 发现两个启动子表达模式基本相同并在同一时期达到活 性高峰 , 因此 nap300 可用于改善 PHB 合成基因在植物体内的表达调控。通过 对种子特异性启动子的比较可加深对其表达模式的了解 , 为植物基因工程中的 精细调控提供依据。 2. 叶绿体基因工程是随着植物遗传转化技术发展刚刚兴起的生物技术 , 具 有超量表达外源基因 , 为原核基因提供适宜表达环境 , 消除 “位置效应”和基因沉默 , 环境安全性好等优点 , 较更适合用于植物生物反应器方面的研究。本研究在国内率先探讨将叶绿体转化技术引入植物生产生物可降解塑料这一领域 的可行性 ( 国外仅有日本一例 ), 构建了叶绿体转化及表达载体 pTRV-PHB, 通过基因枪法将 PHB 合成相关基因导入烟草叶绿体基因组。转基因烟草顺利达到同质化,其形态和生长发育均无异常。 Northern 点杂交检测表明与 PHB 合成相关的三个基因均能在转录水平表达 , 未出现核转化中经常发生的“基因沉默”现象。通过 RT-PCR 进一步检测表明叶绿体型转基因烟草中目的基因的表达水平明显比核转化植株中相应基因的表达水平高。气相色谱分析确证转基因植株具有合成 PHB 的能力。这些都表明叶绿体转化适合用于转基因植物生产 PHB的研究。虽然叶绿体型转基因烟草中产物含量偏低 , 并未达到预期结果 , 但经进一步改进与完善 , 终将会成功地用于生产高附加值产品的植物基因工程中。 3. 为初步探讨叶绿体转化中在同源重组反应介导下整合外源基因的机理 , 从油菜叶绿体基因组中分离两段序列作为同源片段 , 基因枪法转化烟草 , 结果显示即使供体所含同源片段与受体叶绿体基因组相应区域差异高达 10%, 转化效率也无降低。这一现象的发现有助于促进“通用载体” 的改进 , 扩展叶绿体转化受体范围乃至达到商业化应用水平。 4. 成功地通过二次转化获得整合并表达多基因的转基因烟草 , 缩短了研究周期 , 对相关转基因植物的研究有一定参考价值。本文还优化了油菜转化体系 , 使转基因油菜同时整合三个 PHB 合成相关基因的效率由 7.69% 增加至 16.0% 。 田间试验与产物分析正在进行中。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

一、 春化相关基因全长cDNA序列及其启动子的克隆与分析研究 通过建立小麦(Triticum aestivum. L. cv Jingdong No.1)胚芽春化cDNA文库,以春化相关基因VER2的3’端序列为探针,筛选获得全长1195 bp cDNA序列,它编码300个氨基酸。在VER2中存在植物疾病抗性反应蛋白和茉莉酸诱导凝集素两种蛋白的结构域。另外在VER2蛋白中存在核定位信号和多种磷酸酶的作用位点,VER2可能参与了多种调控途径。 以VER2基因的cDNA为探针,利用改进的池式PCR以及高密度膜杂交筛选的方法,从小麦TAC基因组文库中获得41,788 bp的基因组克隆,该序列含有11个基因,其中VER2基因位于第三个基因。VER2基因组序列含有3个内含子,4个外显子与cDNA序列100%同源。通过对转录起始点和转录终止点的分析,进一步证明从cDNA文库筛选得到的VER2基因为全长序列。 对VER2基因的上游启动子区域进行分析,发现基因上游启动子区存在三个小的重复序列,每个片段有482 bp,另有两个较大的重复序列,每个片段有2,161 bp。对上游2.8 kb启动子区(不含重复序列)的响应元件分析,其包括ABA响应元件(ABRE)、茉莉酸甲酯响应元件(Me-JARE)、胚乳特异性表达元件、参与淀粉酶合成的元件以及存在类似GA响应元件(ATAACAAAC)如ATAACATAC等等。根据VER2基因上游6 kb序列结构特点,将VER2启动子区域进行缺失突变形成10个片段,分别以GUS和GFP为报告基因构建成瞬间表达载体和植物表达载体等四类质粒。通过基因枪方法将最大片段(6 kb)驱动GFP报告基因的瞬间表达载体转入经春化处理或未春化处理的小麦幼叶中,结果发现GFP在春化处理的幼叶中表达,而在未春化处理的幼叶中不表达,说明VER2基因的启动子驱动基因转录受春化处理调控。 二、 小麦矮化突变体的研究 通过对小麦矮化突变体gaid遗传生理分析发现该突变体为半显性阻断GA信号途径,由此发现在赤霉素信号途径中,α-淀粉酶的诱导一定程度上通过某些与株高相关的基因控制。突变体gaid呈现对高浓度的脱落酸更敏感,当ABA浓度达到10-6M时,突变体的生长几乎完全受到了抑制,而野生型的生长需要ABA浓度达到10-5M时才能完全受到抑制。通过突变体gaid对乙烯等抑制型生长调节剂的响应实验研究,首次提出GA调控植物伸长生长存在两条信号途径,即GA基础水平信号途径(GA basal level signaling pathway)和GA正常水平信号途径(GA normal level signaling pathway),而乙烯以及高浓的GA合成抑制剂(如PAC)是通过第一条途径(GA基础水平信号途径)起作用。光形态建成中对植株生长的抑制作用存在独立于GA的信号途径。 突变体gaid的根系在强光照(63.5 Es-1m-2)和培养基内(低氧)的生长条件下,表现出弯曲、变短、加粗等异常性状,而随光照强度的减弱,这种根系异常生长的表型也减弱,在暗培养中则完全消失,但无论在哪种环境条件下,相对野生型对照而言,突变体的种子根短、侧根少。低浓度的ABA(10-8M)可以恢复突变体gaid根系在强光低氧条件下的正常生长发育。然而利用IAA及其极性运输的抑制剂(TIBA)、乙烯生物合成前提物(ACC)及合成抑制剂(AOA)处理突变体gaid,并没有发现突变体根系的生长发育得到恢复。 突变体gaid可能是一个新的属于小麦GA信号途径中的负调控基因(GAID)发生了突变或超表达,导致其负调控作用增强,呈现半显性的矮化突变。在与另一已知小麦GA信号途径中的负调控基因RHT的关系研究上发现,GAID可能对RHT蛋白磷酸化后的降解途径起抑制作用。通过双向电泳发现突变体gaid与野生型对照(京冬1号)在生长过程中存在差异蛋白,这将有助于对GA信号途径分子机理的深入研究。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

植物络合素(phytochelatins,PCs)是含有γ-Glu-Cys重复结构的小分子多肽,其结构通式为:(γ-Glu-Cys)n-Gly(n=2-11)。植物络合素(PCs)由植物络合素合酶(PCS)催化谷胱甘肽(GSH)聚合而成,能够络合重金属离子而具有解毒功能,这是植物解毒重金属胁迫的重要机制之一。本文克隆了来源于重金属抗性植物绊根草(Cynodon dactylon cv Goldensun)的植物络合素合酶基因,通过基因工程手段使其在烟草中过量表达,得到了一些有望用于植物修复(phytoremediation)的工程植株。同时,在水稻(Oryza sativa)种子中利用RNAi技术抑制植物络合素合酶基因的表达,以降低重金属离子在人类最重要的粮食作物水稻的籽粒中的积累。 1. 通过RACE(Rapid Amplification of cDNA Ends)方法从抗性植物绊根草中克隆了植物络合素合酶基因CdPCS1,其1515 bp的读码框编码一个含505个氨基酸的蛋白质,蛋白质序列分析表明它具有植物络合素合酶的结构特征,同时还具有磷酸化位点和亮氨酸拉链结构。 2. CdPCS1基因可以互补对铜和镉离子敏感的酵母突变株ABDE-1(cup1Δ)中缺失的金属硫蛋白基因CUP1的功能,也可以互补对砷离子敏感的酵母突变体FD236-6A(acr-3Δ)中的离子外排载体基因ARC3的缺失。 3. 将CdPCS1转入烟草,共获得过表达CdPCS1的烟草44个株系,其中融合GFP的株系16个。对T0代的转基因植株的PCs含量以及重金属抗性和吸收能力进行了分析,其中抗性实验表明,在300μmol/L 的Cd2+离子胁迫11天之后,野生型植株的叶片出现斑点状坏死,而两个转基因烟草株系S6和K49的植株没有出现受伤害症状。在100μmol/L的CdSO4处理一周后,转基因植株中的PCs含量比对照有不同程度的提高,最多提高了2.88倍。当用300μmol/L Cd2+处理9天再用600μmol/L Cd2+处理2天后,Cd的积累量比野生型植株增加了2倍多;用50μmol/L As3+处理7天再用100μmol/L As3+处理2天后,转基因植株对As的积累量最多增加了3倍多。说明转入绊根草PC合酶基因的烟草增加了植物络合素的合成,并由此增加了对镉离子的抗性以及对镉离子和砷离子的积累。 4. 对转基因烟草中的CdPCS1进行了亚细胞定位研究。在激光共聚焦显微镜和荧光显微镜下分别用转基因烟草叶片组织和叶肉细胞原生质体观察融合GFP的CdPCS1,结果表明融合蛋白定位于细胞核中。 5. .利用RNAi技术抑制水稻种子中植物络合素合酶基因的表达,共获得39个转基因株系。其中35个株系为种子特异性ZMM1启动子驱动OsPCS1基因的RNAi,其余4个株系由组成型的Ubiquitin启动子驱动。RT-PCR的分析结果表明:一个由ZMM1启动子驱动的RNAi转基因水稻株系的种子中,OsPCS1的mRNA水平比对照中的下降了一半。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

细胞分裂素(cytokinin,CTK)是五大类植物激素之一,它参与了植物许多生理过程与代谢的调控,主要有促进细胞的分裂和扩大,诱导芽、根和叶绿体的分化,促进种子与果实的发育,解除顶端优势,延缓叶片衰老及增强植物胁迫抗性,调节叶绿体发育基因、营养代谢基因及其它功能基因的表达,调控营养物质的运输和分配等。其调节的植物生理过程也受到其他不同因素的影响。细胞分裂素也是参与植物信号途径间相互作用的一类重要激素。 早期有关细胞分裂素生理作用的研究是基于外源激素的施用来进行的。由于通过外源施用细胞分裂素,其在植物体内的吸收,转运及代谢过程的复杂性和未知性,使得实验研究的因果关系难以确定。随着分子生物学的发展和植物转基因技术的日趋成熟,采用基因工程的方法来研究和探讨细胞分裂素对植物生长发育的调节作用及作用机理是近年来研究的热点,同时也为应用植物激素进行遗传育种提供了广阔的前景。 近年来,越来越多的真核生物启动子的分离克隆,促进了细胞分裂素基因工程的发展。利用具有组织特异性、发育特异性的启动子调控ipt基因,可使ipt基因在植物的特定组织或某一发育阶段进行表达。从而可根据不同的研究目的调控植物转化体中细胞分裂素合成的部位、时间和表达水平。尽管应用一些组织特异启动子融合ipt基因进行了一些细胞分裂素有关生理作用的研究,但是,有关细胞分裂素在胚和种子发育过程中的细胞学方面的研究还很少。 为研究ipt基因在种子发育过程中的作用,我们用大豆种子特异启动子-lectin融合ipt基因转化烟草,获得再生烟草植株。从生理学和细胞学上分析了ipt基因在lectin启动子的控制下的基因表达对种子生长发育的影响。发现在转基因烟草中,lectin-ipt基因的表达促进了种子胚及胚乳的细胞分裂,促使种子胚的生长加快,种子胚的增大为物质的贮存提供了条件,使营养物质更多的向种子运输,主要是可溶性蛋白质含量增加。由此进一步提高了转基因烟草种子干重的增加,种子的萌发与幼苗生长的加快,幼苗鲜重增加。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SKP1 (S-phase kinase-associated-protein 1) 家族蛋白是普遍存在于真核生物中的一类小分子量蛋白质,其主要的生物学功能在于参与SCF复合体的形成,从而调控生物体内泛素介导的蛋白质降解,并参与多方面的生物发育过程。SKP1蛋白能够同时和Cullin蛋白以及F-box蛋白结合,形成SCF复合体的核心部分。因此,SKP1正常功能的维持对于SCF复合体功能的实现至关重要。研究显示,植物中尤其是以拟南芥为代表模式植物中已经发现了21个SKP1基因成员,并发现其中的ASK1参与了多个SCF复合体的形成并调控着包括植物雄性减数分裂、生长素、赤霉素、茉莉酸和乙烯等生理和发育进程。但是来自高等植物尤其是小麦和水稻中的SKP1基因还鲜有报道,其功能还不为所知;此外,SKP1基因与ABA的关系还没有任何报道。   本文利用筛选小麦减数分裂期小花的cDNA文库结合RT-PCR的方法从小麦中分离到了一个SKP1同源基因,并命名为TSK1 (Triticum aestivum SKP1-Like 1)。序列比较结果显示TSK1与多个植物来源的SKP1基因有较高的同源性,对其推测的编码蛋白序列的分析发现TSK1与包括拟南芥来源的ASK1/ASK2等蛋白的羧基端存在非常高的保守性。   在对TSK1表达模式的研究中,本文发现TSK1主要是集中在小麦花序和幼根中表达。利用多种激素对小麦幼苗处理之后,发现TSK1的表达受ABA的抑制,但是当小麦中ABA合成受抑的情况下,TSK1的表达会有所增加,说明TSK1的表达受ABA的调控。RNA原位杂交显示TSK1基因在花顶端分生组织、花药以及幼根等分生较旺盛的组织中有较强的表达,暗示该基因可能参与了与细胞分裂相关的过程。   为了研究TSK1可能具有的功能,本文首先在ask1-1突变体背景上超表达TSK1,发现能够部分恢复ask1-1突变体雄性不育的表型,说明TSK1和ASK1在植物减数分裂过程中存在某种保守性。   在野生型拟南芥中超表达TSK1造成了拟南芥多个方面的变化,包括萌发和开花推迟,气孔开度减小等。进一步的观察发现,转基因植株的萌发和营养生长都呈现出对ABA的超敏感,后续证据证实这种ABA的超敏感性并不是由于转基因拟南芥中ABA合成途径的改变所造成的,而极有可能是影响了ABA的信号传导过程。RT-PCR的结果显示,转基因植株中多个ABA相关的已知基因表达量的发生了变化。   为了提供植物中SKP1家族成员参与调节植物ABA信号传导途径证据,本文对拟南芥ASK1/ask1 ASK12/ask2的杂合双突变体自交后代进行了研究。结果显示,ask1/ask1纯合突变体和ask1/ask1 ASK2/ask2植株表现出对ABA的弱敏感性。该结果从另一个侧面印证了TSK1超表达植株对ABA超敏感表型。   此外,TSK1超表达拟南芥也表现出生长素相关表型,也印证了该基因可能与ASK1类似,参与到生长素介导的根发育过程。   综上所述,本文认为TSK1参与了植物激素介导的植物发育过程,而且极有可能是形成了目前未知的某种SCF复合体。最重要的是,本文的结果为SCF复合体参与调节植物ABA信号传导途径提供了生理及遗传层面的证据。      

Relevância:

10.00% 10.00%

Publicador:

Resumo:

青蒿素是从我国传统药用植物中药青蒿(Artemisia annua L.)中提取的新型抗疟特效药,其生物合成途径属于植物类异戊二烯代谢途径。目前,青蒿素生物合成的组织部位及其调控机制仍不完全清楚。紫穗槐二烯合酶(amorpha-4, 11-diene synthase, ADS)作为青蒿素生物合成分支途径的第一个关键酶,催化倍半萜化合物的通用前体法呢基焦磷酸环化,生成紫穗槐二烯。本论文通过对ADS 表达特性的分析,研究了青蒿素生物合成的组织特异性及其调控机制,主要研究结果如下: 一.紫穗槐二烯合酶基因启动子功能的研究 从青蒿高产株系001 中克隆得到了2850 bp 的ADS 启动子调控区。通过比较5’RACE 的测序结果与启动子序列,确定转录起始位点位于翻译起始位点上游44 bp,TATA 盒下游27 bp。该启动子序列包含的顺式作用元件有脱落酸应答元件(ABRE )、乙烯应答元件(ERE)、生长素应答元件(AUXRE)等植物激素反应元件,以及低温应答元件(LTRE)、高温应答元件(HSE)等与逆境有关的反应元件,还有与真菌诱导有关的W-box 元件等。将不同长度ADS 启动子与报告基因GUS 融合,构建了植物表达载体,通过农杆菌介导的方法获得稳定整合的转基因烟草。经过组织化学、GUS 荧光活性检测及RT-PCR 分析,发现该启动子的转录活性很低,无法通过GUS 染色进行观察。GUS 荧光活性检测及RT-PCR 结果表明,转录起始位点上游346 bp 是ADS 基础表达所必需的。高温、低温、干旱、水杨酸、茉莉酸甲酯等处理均能促进青蒿中ADS 的表达,而脱落酸和乙烯的作用效果较小,与启动子序列分析的结果并不完全一致。 二.紫穗槐二烯合酶基因表达特性的研究 以青蒿高产株系001 为材料,在基因和蛋白水平揭示了ADS 的表达特性。RT-PCR 和Western 分析结果表明,ADS 在幼叶和花蕾中大量表达,在老叶和完全开放的花中表达量很低,而在青蒿的根和茎中几乎检测不到ADS 的表达。石蜡切片和整体原位杂交的结果表明,ADS 在顶端分生组织、叶原基及分泌腺毛中表达,在非分泌的T 型腺毛中不表达。当叶片完全展开后,ADS 只在分泌腺毛中表达,而且随着叶片的生长和老化,ADS 的表达量逐渐减少。另一个非常有趣的发现是同一叶片上的分泌腺毛,有些有ADS 的表达,有些则没有。用强光、低温、高温和水杨酸等因素处理后,有ADS 表达的分泌腺毛的比例没有明显的变化。 三.外源水杨酸促进青蒿素的生物合成 研究了外源水杨酸对青蒿素生物合成的影响,结果表明:1 mM 水杨酸处理后,青蒿叶片中的游离态水杨酸含量快速增加,处理后4 h 达到 0.79 μg g-1 FW,是对照的3.5 倍。外源水杨酸能够抑制青蒿中过氧化氢酶活性,提高抗坏血酸过氧化物酶活性,并通过对抗氧化酶活性的抑制引起青蒿体内活性氧水平的迅速升高。在处理后4 h,青蒿中H2O2 和O2-的含量分别达到对照的2.1 倍和2.4 倍。青蒿素含量在水杨酸处理后的前8 h 缓慢升高,随后升高的速度增加。外源水杨酸处理后8 h 和96 h,青蒿素含量分别达到9.1 mg g-1DW 和13.9 mg g-1DW,比对照高21.7%和75.8%。处理后8 h,青蒿酸的含量没有明显变化,随后开始增加。处理后16 h,青蒿酸的含量达到3.6 mg g-1DW,比对照高90%, 随后继续升高,至96 h 达到4.98 mg g-1 DW,比对照高127%。二氢青蒿酸的含量在处理后的8 h 内有所下降,随后缓慢升高。处理后8 h,二氢青蒿酸的含量降低了23.3%,随后二氢青蒿酸的含量开始升高,在处理后96 h,达到7.4 mg g-1DW,比对照高72.1%。外源SA 处理提高了青蒿素及其前体的总含量,在处理后1、2、4 天分别比对照提高了1.3、1.5 和1.8 倍。Northern 结果表明,水杨酸强烈诱导了青蒿素生物合成基因HMGR、ADS 的表达,但是对FPS、CYP71AV1 的诱导作用较小。这些研究结果表明,外源水杨酸至少通过两条途径诱导青蒿素的生物合成:一是通过诱导活性氧的产生促进二氢青蒿酸向青蒿素的转化;二是上调部分青蒿素生物合成相关基因的表达。根据这一研究成果,在青蒿田间栽培中,可以在收获前通过喷施水杨酸来快速、有效和低成本地提高青蒿素产量。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

高等植物基因表达过程中的信号传导是目前植物分子生物学研究的前沿和热点之一。不少研究者已将脱落酸、乙烯、细胞分裂素及其它植物激素的作用一起归之于植物基因表达的信号传导系统。细胞分裂素作为—类重要的植物激素在植物的生长和发育过程中起重要的调节控制作用。因此研究细胞分裂素的基因与植物发育过程的关系是十分重要的。 为研究细胞分裂素对植物基因表达的调节,本文从转录和翻译水平上测定了黄瓜子叶在外源细胞分裂素诱导下微管蛋白基因表达的活性。发现经BAP处理的黄瓜子叶中α,β-tubulin mRNA迅速积累,微管蛋白的含量迅速增加。这表明外源细胞分裂素在诱导黄瓜子叶膨大的过程中激活了微管蛋白基因的表达。 为探索不同启动子驱动下的细胞分裂素基因转入植物后的表达对转基因植物生长发育的调控,本文将来自根癌农杆菌的细胞分裂素基因(T-cyt)分别置于CaMV 35S启动子,rbc S启动子和T-cyt基因自身启动子的调控下,构建了嵌合表达质粒,分别转化烟草和马铃薯。转基因烟草和马铃薯的PCR检测和Southern杂交鉴定均证实T-cyt基因已分别整合进烟草和马铃薯的核基因组中。标志基因NPTⅡ的酶活性测定表明有外源基因的表达。转基因烟草的Northern分析表明:CaMV 35s启动子驱动的T-cyt基因的mRNA在叶、茎和根中均有表达;rbc S启动子指导的T-cyt基因在叶中表达最强,茎中较弱,在根中几乎没有表达。转细胞分裂素基因的烟草在生长发育上与未转化的对照相比有明显不同。转基因烟草中叶绿素a,b含量明显增加,叶面积减小,叶衰老迟缓。T-cyt基因转化的烟草顶端优势受到抑制,侧芽生长旺盛;与对照相比,其节间短,株高降低,根生长受抑制。 本文还构建了T-cyt基因自身启动子与报告基因GUS编码区的嵌合表达质粒,转化烟草和马铃薯以研究T-cyt启动子在植物中的表达。组织化学定位测定表明,T-cyt启动子在植物的茎,叶中的表达较强,特别是在腋芽的生长点有很高的表达活性,但在根中的表达较弱。诱导性表达试验表明,T-cyt启动子的表达强度受细胞分裂素的诱导,而生长素对T-cyt启动子的表达无明显影响。这提示T-cyt启动子是一个细胞分裂素诱导性表达的启动子。 总之,将T-cyt基因转入植物,作为调节内源细胞分裂素的一种手段,可以对植物的生长发育进行调控。尤其是利用发育阶段特异性和各种器官特异性表达的启动子可以调节T-cyt基因的表达活性,有可能创造出具有经济价值的、具有新遗传特性的植物。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

水稻是我国重要的粮食作物之一,它是一种典型的C3植物。与其它C3作物不一样的是,水稻的生长需要相对较高的温度和充足的阳光照射。然而高温和高光强的生长环境更加适合于C4植物的生长,更加有利于发挥C4植物高光合效率的特点。因此本论文希望将C4植物中固定CO2的酶磷酸烯醇式丙酮酸羧化酶基因导入水稻,获得一种更加适合高温和高光强生活环境的“C4型”水稻,这对于提高水稻的产量,满足人口增长对粮食需求具有重大意义。 本论文从C4植物谷子和甘蔗中克隆了其C4型磷酸烯醇式丙酮酸羧化酶cDNA基因,获得了具有自主知识产权的基因克隆,并将它们导入粳稻品种中花8号,进而对转基因材料的光合生理特性进行了研究。结果如下: 首次从谷子中得到了ppc基因两个cDNA克隆,分别命名为Mppc1和Mppc2。前者是一个C3型的ppc基因,它可能属于在根中特异表达的C3-2型ppc基因;后者是在绿色叶片中大量表达的C4型ppc基因。它们所编码的蛋白的氨基酸残基数分别为961和964,序列同源性为82.5%。C4型PEPC多出的3个氨基酸位于N末端。利用RACE的方法我们得到了谷子C4型ppc基因完整的cDNA序列,包括63bp的5'非编码区,2895bp的编码区和256bp的3'非编码区。 首次获得了甘蔗C4型ppc基因完整的cDNA序列的克隆,命名为Sppc。它包括95bp的5'非编码区、2886bp的编码区,和224bp的3'非编码区。 利用所克隆的基因,分别连上强组成型启动子Ubiquitin启动子和强光调控启动子Rubisco小亚基启动子后,再插入两个标记基因不同的表达载体pCB和pPCB的多克隆位点中,构建了八个含有外源ppc基因的植物表达载体pCB-Pubi-Mppc、pCB-Pubi-Sppc、pCB-PrbcS-Mppc、pCB-PrbcS-Sppc、pPCB-Pubi-Mppc、pPCB-Pubi-Sppc、pPCB-PrbcS-Mppc和pPCB-PrbcS-Sppc。再加上含有玉米完整的C4型ppc 核基因的载体pCB-ZMppc,共有9个载体。利用农杆菌介导法进行了水稻的转化,各个载体都获得了大量的转基因植株。对标记基因潮霉素磷酸转移酶基因hpt和磷酸甘露糖异构酶基因pmi以及导入的目的ppc基因的PCR扩增检测,结果显示绝大多数转基因植株都能扩增出目的片段,而未转化的植株则没有扩增产物。对部分转基因水稻的Southern和Western杂交以及RT-PCR分析都表明,无论从DNA水平、mRNA水平,还是从蛋白质水平上都证明外源ppc基因都成功地导入了水稻,并获得了正确的表达。 对各载体转基因植株PEPC活性大规模的测定表明,转入玉米完整C4型PEPC核基因(有内含子)的水稻表现出极大的表达效率,大多数转基因材料的PEPC活性为对照的10-20倍,其活性最高可达到对照的44倍。转入谷子和甘蔗PEPC基因cDNA的水稻,表达的效率很低,多数材料活性增加仅为对照的2-5倍,但也有极少数材料活性增加了10倍以上。用Rubisco小亚基启动子控制的ppc基因在水稻的表达活性要略高于Ubiquitin启动子控制的ppc基因。以上结果说明ppc基因的内含子在其转录或mRNA的稳定上起着重要作用。 对部分转基因材料气体交换特征的研究发现,随着转基因水稻PEPC活性的增加,净光合速率也有逐渐增加的趋势。其中PEPC活性最大的ZM24株系的三个单株净光合速率比对照增加了39.8%、13.7%和28.6%,而它们的PEPC活性比对照分别增加了21.2、21.9和23.6倍。 转PEPC水稻的净光合速率与气孔导度具有显著的相关性。这说明表达的外源ppc 基因产物PEPC参与了转基因水稻的气孔运动,使气孔开放程度增加。更有意义的是过表达PEPC的水稻具有更高的水分利用效率,这就增加了其耐旱能力。在光抑制条件下转基因水稻也具有更高的光合能力。这些特征表明转ppc基因的水稻比对照更加适合于水稻高温高光强和干旱的原生环境。