299 resultados para UV Raman
Resumo:
In this paper, we report the laser-induced periodic structure with different spatial characteristics on the surface of polished ZnO single-crystalline by high repetition rate femtosecond laser pulses. This study demonstrates that, using different laser parameters and irradiation conditions, ZnO nanoripples and nanorods were successfully prepared. We have investigated the surface by means of scanning electron microscope (SEM), Raman scattering and photoluminescence (PL). We propose that second-order harmonic has a strong influence on the formation of nanostructures. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
Stimulated Raman scattering (SRS) of a relativistic laser in plasmas is studied in the framework of the standard equation set of a three-wave process. As far as every wave involved in the process is concerned, its evolution has two aspects: time-dependent amplitude and time-dependent frequency. These two aspects affect each other. Strict analysis and numerical experiment on the full three-wave equation set reveal that a fast growing mode of the instability, which could reach a balance or saturation point during a period far shorter than an estimation based on conventional analysis, could take place in a standard three-wave process without coupling with a fourth wave. This fast growing mode is found to stem from the constraint set by the background density on the amplitude of the driven Langmuir wave. The effect of various parameters on the development of the SRS instability is studied by numerical calculation of the history of the instability in different cases. (c) 2007 American Institute of Physics.
Resumo:
Raman spectroscopy on single, living epithelial cells captured in a laser trap is shown to have diagnostic power over colorectal cancer. This new single-cell technology comprises three major components: primary culture processing of human tissue samples to produce single-cell suspensions, Raman detection on singly trapped cells, and diagnoses of the cells by artificial neural network classifications. it is compared with DNA flow cytometry for similarities and differences. Its advantages over tissue Raman spectroscopy are also discussed. In the actual construction of a diagnostic model for colorectal cancer, real patient data were taken to generate a training set of 320 Raman spectra and, a test set of 80. By incorporating outlier corrections to a conventional binary neural classifier, our network accomplished significantly better predictions than logistic regressions, with sensitivity improved from 77.5% to 86.3% and specificity improved from 81.3% to 86.3% for the training set and moderate improvements for the test set. Most important, the network approach enables a sensitivity map analysis to quantitate the relevance of each Raman band to the normal-to-cancer transform at the cell level. Our technique has direct clinic applications for diagnosing cancers and basic science potential in the study of cell dynamics of carcinogenesis. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The effect of alcohol solution on single human red blood Cells (RBCs) was investigated using near-infrared laser tweezers Raman spectroscopy (LTRS). In our system, a low-power diode laser at 785 nm was applied for the trapping of a living cell and the excitation of its Raman spectrum. Such a design could simultaneously reduce the photo-damage to the cell and suppress the interference from the fluorescence on the Raman signal. The denaturation process of single RBCs in 20% alcohol solution was investigated by detecting the time evolution of the Raman spectra at the single-cell level. The vitality of RBCs was characterized by the Raman band at 752 cm(-1), which corresponds to the porphyrin breathing mode. We found that the intensity of this band decreased by 34.1% over a period of 25 min after the administration of alcohol. In a further study of the dependence of denaturation on alcohol concentration, we discovered that the decrease in the intensity of the 752 cm(-1) band became more rapid and more prominent as the alcohol concentration increased. The present LTRS technique may have several potential applications in cell biology and medicine, including probing dynamic cellular processes at the single cell level and diagnosing cell disorders in real time. Copyright (c) 2005 John Wiley T Sons, Ltd.
Resumo:
We present a feedback control scheme that designs time-dependent laser-detuning frequency to suppress possible dynamical instability in coupled free-quasibound-bound atom-molecule condensate systems. The proposed adaptive frequency chirp with feedback is shown to be highly robust and very efficient in the passage from an atomic to a stable molecular Bose-Einstein condensate.
Resumo:
A single-cell diagnostic technique for epithelial cancers is developed by utilizing laser trapping and Raman spectroscopy to differentiate cancerous and normal epithelial cells. Single-cell suspensions were prepared from surgically removed human colorectal tissues following standard primary culture protocols and examined in a near-infrared laser-trapping Raman spectroscopy system, where living epithelial cells were investigated one by one. A diagnostic model was built on the spectral data obtained from 8 patients and validated by the data from 2 new patients. Our technique has potential applications from epithelial cancer diagnosis to the study of cell dynamics of carcinogenesis. (c) 2006 Optical Society of America.
Resumo:
Raman spectroscopy on single, living epithelial cells captured in a laser trap is shown to have diagnostic power over colorectal cancer. This new single-cell technology comprises three major components: primary culture processing of human tissue samples to produce single-cell suspensions, Raman detection on singly trapped cells, and diagnoses of the cells by artificial neural network classifications. it is compared with DNA flow cytometry for similarities and differences. Its advantages over tissue Raman spectroscopy are also discussed. In the actual construction of a diagnostic model for colorectal cancer, real patient data were taken to generate a training set of 320 Raman spectra and, a test set of 80. By incorporating outlier corrections to a conventional binary neural classifier, our network accomplished significantly better predictions than logistic regressions, with sensitivity improved from 77.5% to 86.3% and specificity improved from 81.3% to 86.3% for the training set and moderate improvements for the test set. Most important, the network approach enables a sensitivity map analysis to quantitate the relevance of each Raman band to the normal-to-cancer transform at the cell level. Our technique has direct clinic applications for diagnosing cancers and basic science potential in the study of cell dynamics of carcinogenesis. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A nonvolatile recording scheme is proposed using LiNbO3:Ce:Cu crystals and modulated UV light to record gratings simultaneously in two centres and using red light to bleach the grating in the shallow centre to realize persistent photorefractive holographic storage. Compared with the normal UV-sensitized nonvolatile holographic system, the amplitude of refractive-index changes is greatly increased and the recording sensitivity is significantly enhanced by recording with UV light in the LiNbO3:Ce:Cu crystals. Based on jointly solving the two-centre material equations and the coupled-wave equations, temporal evolutions of the photorefractive grating and the diffraction effciency are effectively described and numerically analysed. Roles of doping levels and recording-beam intensity are discussed in detail. Theoretical results confirm and predict experimental results.
Resumo:
Modulated UV light is used to increase the sensitivity of the two-centre holographic recording. Inherent mechanisms of nonvolatile holographic recording in oxidized and reduced crystals are numerically analysed based on solving the two-centre material equations modilied for UV-Iight recording. Experiments verification is performed with an oxidized crystal and a reduced crystal, and the role of UV intensity on the sensitivity is presented.
Resumo:
制备了一种新型的氧卤碲酸盐玻璃:TeO2-Nb2O5-YF3,给出并研究了TeO2-Nb2O5-YF3三元系统的玻璃形成范围。测试了玻璃的密度、折射率、差热(DTA)、拉曼光谱、红外透射光谱以及紫外吸收光谱,通过光谱分析研究了组分含量的变化对玻璃结构及红外透射特性的影响。实验结果表明,TeO2-Nb2O5-YF3玻璃系统具有优良的成玻璃性能和热稳定性等特性,而且在2.8~3.3 μm区域内无明显的[OH]基团吸收,在中红外3~5 μm区域具有优良透射性能,因此在中红外透射方面具有潜在应用价值。
Resumo:
制备了一种新型的氧卤碲酸盐玻璃:(80-x)TeO2—15ZnCl2-xBaO-5NaF(x=30、20、10、0mol%),对玻璃的机械强度、热稳定性、拉曼光谱、紫外吸收光谱、红外透过光谱等特性进行了研究.通过拉曼光谱分析研究了玻璃组分含量的变化对玻璃结构和红外透过性能的影响.结果表明,随着BaO含量的增加,玻璃在红外波段透过率显著增加,并且红外透过截止波长向长波方向移动,本文对这一实验结果进行了机理性的研究探讨.同时,通过在熔制过程中通入高纯O2,以及引入适量的卤化物有效地除去玻璃中的[OH]基团,使
Resumo:
Glasses with compositions 50Bi