154 resultados para Time dependent Ginzburg-Landau equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An improved two-dimensional space-time conservation element and solution element ( CE/ SE) method with second-order accuracy is proposed, examined and extended to simulate the detonation propagations using detailed chemical reaction models. The numerical results of planar and cellular detonation are compared with corresponding results by the Chapman-Jouguet theory and experiments, and prove that the method is a new reliable way for numerical simulations of detonation propagation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The viscoelastic deformation of Ce-based bulk metallic glasses (BMGs) with low glass transition temperature is investigated at room temperature. Contact stiffness and elastic modulus of Ce-based BMGs cannot be derived using the conventional Oliver-Pharr method [W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992)]. The present work shows that the time dependent displacement of unloading segments can be described well by a generalized Kelvin model. Thus, a modified Oliver-Pharr method is proposed to evaluate the contact stiffness and elastic modulus, which does, in fact, reproduce the values obtained via uniaxial compression tests. (c) 2007 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a direct and dynamical method to distinguish low-dimensional deterministic chaos from noise. We define a series of time-dependent curves which are closely related to the largest Lyapunov exponent. For a chaotic time series, there exists an envelope to the time-dependent curves, while for a white noise or a noise with the same power spectrum as that of a chaotic time series, the envelope cannot be defined. When a noise is added to a chaotic time series, the envelope is eventually destroyed with the increasing of the amplitude of the noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical study of turbulent flow in a straight duct of square cross-section is made. An order-of-magnitude analysis of the 3-D, time-averaged Navier-Stokes equations resulted in a parabolic form of the Navier-Stokes equations. The governing equations, expressed in terms of a new vector-potential formulation, are expanded as a multi-deck structure with each deck characterized by its dominant physical forces. The resulting equations are solved using a finite-element approach with a bicubic element representation on each cross-sectional plane. The numerical integration along the streamwise direction is carried out with finite-difference approximations until a fully-developed state is reached. The computed results agree well with other numerical studies and compare very favorably with the available experimental data. One important outcome of the current investigation is the interpretation analytically that the driving force of the secondary flow in a square duct comes mainly from the second-order terms of the difference in the gradients of the normal and transverse Reynolds stresses in the axial vorticity equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analysis of the time-dependent resistive voltage and power deposition during the breakdown phase of pseudo-spark is presented. The voltage and current were measured by specially designed low-inductance capacitive voltage divider and current measuring resistor. The measured waveforms of voltage and current are digitized and processed by a computer program to remove the inductive component, so as to obtain resistive voltage and power deposition. The influence of pressure, cathode geometry and charging voltage of storage capacitors on the electrical properties in the breakdown phase are investigated. The results suggest that the breakdown phase of pseudo-spark consists of three stages. The first stage is mainly hollow cathode discharge. In the second stage, field-enhanced thermionic emission takes place, resulting in a fast voltage drop and sharp rise of discharge current. The third stage of discharge depends simply on the parameters of the discharge circuit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A regular perturbation technique is suggested to deal with the problem of one dimensional stress wave propagation in viscoelastic media with damage. Based upon the first order asymptotic solution obtained, the characteristics of wave attenuation are studied. In fact, there exist three different time-dependent phenomena featuring the dynamic response of the materials, the first expressing the characteristics of wave propagation, the second indicating the innate effect of visco-elastic matrix and the third coming from the time dependent damage. The comparision of first order asymptotic solution with the numerical results calculated by a finite difference procedure shows that the perturbation expansion technique may offer a useful approach to the problem concerned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibility of lifetime measurement in a flowing medium with phase fluorometry is investigated theoretically. A 3-D time dependent partial differential equation of the number density of atoms (or molecules) in the upper level of the fluorescence transition is solved analytically, taking flow, diffusion, optical excitation, decay, Doppler shift, and thickness of the excitation light sheet into account. An analytical expression of the intensity of the fluorescence signal in the flowing medium is deduced. Conditions are given, in which the principle of lifetime measurement with phase fluorometry in the static sample cell can be used in a flowing medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper particular investigation is directed towards the combined effects of horizontal and vertical motions of real earthquakes to structures resting on sliding base. A simplified method is presented to treat the nonlinear effects of time dependent frictional force of the sliding base as a function of the vertical reaction produced by the foundation. As an example, the El Centro 1940 earthquake record is used on a structural model to show the structural responses due to a sliding base with different frictional and stiffness characteristics. The study shows that vertical ground motion does affect both the superstructure response and the base sliding displacement. Nevertheless, the sliding base isolator is shown to be effective for the reduction of seismic response of a superstructure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we deduce the formulae for rate-constant of microreaction with high resolving power of energy from the time-dependent Schrdinger equation for the general case when there is a depression on the reaetional potential surface (when the depression is zero in depth, the case is reduced to that of Eyring). Based on the assumption that Bolzmann distribution is appropriate to the description of reactants, the formula for the constant of macrorate in a form similar to Eyring's is deduced and the expression for the coefficient of transmission is given. When there is no depression on the reactional potential surface and the coefficient of transmission does not seriously depend upon temperature, it is reduced to Eyring's. Thus Eyring's is a special case of the present work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Rayleigh-Marangoni-Benard convective instability (R-M-B instability) and flow patterns in the two-layer system of silicon oil 10cSt and Fluorinert FC70 liquids are studied theoretically and experimentally. Both linear instability analysis and 2D numerical simulation (A=L/H=10) were performed to study the influence of thermocapillary force on the convective instability of the two-layer system. Time-dependent oscillations arising at the onset of convection were investigated in a larger various range of two-layer depth ratios (Hr=H1/H2) from 0.2 to 5.0 for different total depth less than 12mm. Our results are different from the previous study on the Rayleig-B閚ard instability and show the strong effects of thermocapillary force at the interface on the time-dependent oscillations at the onset of instability convection. Primary experimental results of the critical instability parameters and the convective structure in the R-M-B convection have been obtained by using the digital particle image velocimetry (DPIV) system, and a good agreement in comparison with the results of numerical simulation was obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Rayleigh-Marangoni-Benard convective instability (R-M-B instability) in the two-layer systems such as Silicone oil (10cSt)/Fluorinert (FC70) and Silicone oil (2cSt)/water liquids are studied. Both linear instability analysis and nonlinear instability analysis (2D numerical simulation) were performed to study the influence of thermocapillary force on the convective instability of the two-layer system. The results show the strong effects of thermocapillary force at the interface on the time-dependent oscillations at the onset of instability convection. The secondary instability phenomenon found in the real two-layer system of Silicone oil over water could explain the difference in the comparison of the Degen's experimental observation with the previous linear stability analysis results of Renardy et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new structure of solution elements and conservation elements based on rectangular mesh was pro- posed and an improved space-time conservation element and solution element (CE/SE) scheme with sec- ond-order accuracy was constructed. Furthermore, the application of improved CE/SE scheme was extended to detonation simulation. Three models were used for chemical reaction in gaseous detonation. And a two-fluid model was used for two-phase (gas–droplet) detonation. Shock reflections were simu- lated by the improved CE/SE scheme and the numerical results were compared with those obtained by other different numerical schemes. Gaseous and gas–droplet planar detonations were simulated and the numerical results were carefully compared with the experimental data and theoretical results based on C–J theory. Mach reflection of a cellular detonation was also simulated, and the numerical cellular pat- terns were compared with experimental ones. Comparisons show that the improved CE/SE scheme is clear in physical concept, easy to be implemented and high accurate for above-mentioned problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

利用三维有限元方法对三峡升船机塔柱结构的动力学特性及随机地震响应进行了计算分析,结果表明塔柱结构柔度较大,其项部节点随机地震位移响应为中宽带过程.在此基础上,采用首次超越破坏机制,以塔柱结构顶部典型位置的位移限值为可靠度界限,对设计地震烈度下升船机塔柱结构的时变动力可靠度进行了计算分析,得到了塔柱结构设计基准期内的时变动力可靠度,并讨论了可靠度界限值的随机性对结构抗震时变可靠度计算结果的影响,建议升船机结构抗震可靠度计算模型采用Markov过程假定.该文可为升船机结构设计及安全运行提供必要的参考.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An arc-heated thruster of 130–800 W input power is tested in a vacuum chamber at pressures lower than 20 Pa with argon or H2–N2 gas mixture as propellant. The time-dependent arc voltage-current curve, outside-surface temperature of the anode nozzle and the produced thrust of the firing arcjet thruster are measured in situ simultaneously, in order to analyze and evaluate the dependence of thruster working characteristics and output properties, such as specific impulse and thrust efficiency, on nozzle temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scaling law of photoionization in few-cycle laser pulses is verified in this paper. By means of numerical solution of time-dependent Schrodinger equation, the photoionization and the asymmetry degree of photoionization of atoms with different binding potential irradiated by various laser pulses are studied. We find that the effect of increasing pulse intensity is compensated by deepening the atomic binding potential. In order to keep the asymmetric photoionization unchanged, if the central frequency of the pulse is enlarged by k times, the atomic binding potential should also be enlarged by k times, and the laser intensity should be enlarged by k(3) times. (c) 2005 Optical Society of America.