281 resultados para Tibetan Buddhism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using static chamber technique,fluxes of CO2,CH4 and N2O were measured in the alpine grassland area from July 2000 to July 2001,determinations of mean fluxes showed that CO2 and N2O were generally released from the soil,while the alpine grassland accounted for a weak CH4 sink.Fluxes of CO2,CH4 and N2O ranged widely.The highest CO2 emission occurred in August,whereas almost 90?of the whole year emission occurred in the growing season.But the variations of CH4 and N2O fluxes did not show any clear patterns over the one-year-experiment.During a daily variation,the maximum CO2 emission occurred at 16:00,and then decreased to the minimum emission in the early morning.Daily pattern analyses indicated that the variation in CO2 fluxes was positively related to air temperatures(R^2=0.73)and soil temperatures at a depth of 5 cm(R^2=0.86),whereas daily variations in CH4 and N2O fluxes were poorly explained by soil temperatures and climatic variables.CO2 emissions in this area were much lower than other grasslands in plain areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Key Research and Development Program [2010CB833500]; National Natural Science Foundation of China [30590381]; Chinese Academy of Sciences [KZCX2-YW-432]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Key Research and Development Program [2010CB833500]; Natural Science Foundation of China [30590381]; Knowledge Innovation Project of Chinese Academy of Sciences [KZCX2-YW-432]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant traits and individual plant biomass allocation of 57 perennial herbaceous species, belonging to three common functional groups (forbs, grasses and sedges) at subalpine (3700 m ASL), alpine (4300 m ASL) and subnival (>= 5000 m ASL) sites were examined to test the hypothesis that at high altitudes, plants reduce the proportion of aboveground parts and allocate more biomass to belowground parts, especially storage organs, as altitude increases, so as to geminate and resist environmental stress. However, results indicate that some divergence in biomass allocation exists among organs. With increasing altitude, the mean fractions of total biomass allocated to aboveground parts decreased. The mean fractions of total biomass allocation to storage organs at the subalpine site (7%+/- 2% S.E.) were distinct from those at the alpine (23%+/- 6%) and subnival (21%+/- 6%) sites, while the proportions of green leaves at all altitudes remained almost constant. At 4300 m and 5000 m, the mean fractions of flower stems decreased by 45% and 41%, respectively, while fine roots increased by 86% and 102%, respectively. Specific leaf areas and leaf areas of forbs and grasses deceased with rising elevation, while sedges showed opposite trends. For all three functional groups, leaf area ratio and leaf area root mass ratio decreased, while fine root biomass increased at higher altitudes. Biomass allocation patterns of alpine plants were characterized by a reduction in aboveground reproductive organs and enlargement of fine roots, while the proportion of leaves remained stable. It was beneficial for high altitude plants to compensate carbon gain and nutrient uptake under low temperature and limited nutrients by stabilizing biomass investment to photosynthetic structures and increasing the absorption surface area of fine roots. In contrast to forbs and grasses that had high mycorrhizal infection, sedges had higher single leaf area and more root fraction, especially fine roots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High levels of available nitrogen (N) and carbon (C) have the potential to increase soil N and C mineralization We hypothesized that with an external labile C or N supply alpine meadow soil will have a significantly higher C mineralization potential and that temperature sensitivity of C mineralization will increase To test the hypotheses an incubation experiment was conducted with two doses of N or C supply at temperature of 5 15 and 25 C Results showed external N supply had no significant effect on CO2 emission However external C supply increased CO2 emission Temperature coefficient (Q(10)) ranged from 113 to 1 29 Significantly higher values were measured with C than with N addition and control treatment Temperature dependence of C mineralization was well-represented by exponential functions Under the control CO2 efflux rate was 425 g CO2-Cm-2 year(-1) comparable to the in situ measurement of 422 g CO2-Cm-2 year(-1) We demonstrated if N is disregarded microbial decomposition is primarily limited by lack of labile C It is predicted that labile C supply would further increase CO2 efflux from the alpine meadow soil (C) 2010 Elsevier Masson SAS All rights reserved