183 resultados para Thermodynamic
Resumo:
The low temperature heat capacities of N-(2-cyanoethyl)aniline were measured with an automated adiabatic calorimeter over the temperature range from 83 to 353 K. The temperature corresponding to the maximum value of the apparent heat capacity in the fusion interval, molar enthalpy and entropy of fusion of this compound were determined to be 323.33 +/- 0.13 K, 19.4 +/- 0.1 kJ mol(-1) and 60.1 +/- 0.1 J K-1 mol(-1), respectively. Using the fractional melting technique, the purity of the sample was determined to be 99.0 mol% and the melting temperature for the tested sample and the absolutely pure compound were determined to be 323.50 and 323.99 K, respectively. A solid-to-solid phase transition occurred at 310.63 +/- 0.15 K. The molar enthalpy and molar entropy of the transition were determined to be 980 +/- 5 J mol(-1) and 3.16 +/- 0.02 J K-1 mol(-1), respectively. The thermodynamic functions of the compound [H-T - H-298.15] and [S-T - S-298.(15)] were calculated based on the heat capacity measurements in the temperature range of 83-353 K with an interval of 5 K. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The molar heat capacities of 2-(chloromethylthio)benzothiazole (molecular formula C8H6ClNS2, CA registry no. 28908-00-1) were measured with an adiabatic calorimeter in the temperature range between (80 and 350) K. The construction and procedures of the calorimeter were described in detail. The performance of the calorimetric apparatus was evaluated by heat capacity measurements on alpha-Al2O3. The deviation of experiment heat capacities from the corresponding smoothed values lies within 0.3%, whereas the uncertainty is within +/-0.5%, compared with that of the recommended reference data over the whole experimental temperature range. A fusion transition was found from the C-p-T curve of 2-(chloromethylthio)benzothiazole. The melting temperature and the molar enthalpy and entropy of fusion of the compound were determined to be T-m = (315.11 +/- 0.04) K, Delta(fus)H(m) = (17.02 +/- 0.03) kJ(.)mol(-1), and Delta(fus)S(m) = (54.04 +/- 0.05) J(.)mol(-1.)K(-1), respectively. The thermodynamic functions (H-T - H-298.15) and (S-T - S-298.15) were also derived from the heat capacity data. The molar fraction purity of the 2-(chloromethylthio)benzothiazole sample used in the present calorimetric study was determined to be 99.21 by fraction melting.
Resumo:
The low-temperature heat capacities of myclobutanil (C15H17CIN4) were precisely measured with an automated adiabatic calorimeter over the temperature range from 78 to 368 K. The sample was observed to melt at (348.800 +/- 0.06) K. The molar enthalpy and entropy of the melting as well as the chemical purity of the substance were determined to be Delta(fus)H(m) = (30931 +/- 11) J.mol(-1), Delta(fus)S(m) = (88.47 +/- 0.02) J.mol(-1).K-1 and 99.41%, respectively. Further research of the melting process for this compound was carried out by means of DSC technique. The result was in agreement with that obtained from the measurements of heat capacities.
Resumo:
The heat capacities (C-p) of five types of gasohol (50 wt % ethanol and 50 wt % unleaded gasoline 93(#) (E50), 60 wt % ethanol and 40 wt % unleaded gasoline 93(#) (E60), 70 wt % ethanol and 30 wt % unleaded gasoline 93(#) (E70), 80 wt % ethanol and 20 wt % unleaded gasoline 93(#) (E80), and 90 wt % ethanol and 10 wt % unleaded gasoline 93(#) (E90), where the "93" denotes the octane number) were measured by adiabatic calorimetry in the temperature range of 78-320 K. A glass transition was observed at 95.61, 96.14, 96.56, 96.84, and 97.08 K for samples from the E50, E60, E70, E80, and E90 systems, respectively. A liquid-solid phase transition and a solid-liquid phase transition were observed in the respective temperature ranges of 118-153 and 155-163 K for E50, 117-150 and 151-164 K for E60, 115-154 and 154-166 K for E70, 113-152 and 152-167 K for E80, and 112-151 and 1581-167 K for E90. The polynomial equations of Cp and the excess heat capacities (C-p(E)), with respect to the thermodynamic temperature, were established through least-squares fitting. Based on the thermodynamic relationship and the equations obtained, the thermodynamic functions and the excess thermodynamic functions of the five gasohol samples were derived.
Resumo:
Covering the solid lattice with a finite-element mesh produces a coarse-grained system of mesh nodes as pseudoatoms interacting through an effective potential energy that depends implicitly on the thermodynamic state. Use of the pseudoatomic Hamiltonian in a Monte Carlo simulation of the two-dimensional Lennard-Jones crystal yields equilibrium thermomechanical properties (e.g., isotropic stress) in excellent agreement with ``exact'' fully atomistic results.
Resumo:
An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80mm in inner diameter, 10mm in wall thickness and 5360mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients a and 0 are quantitatively determined.
Resumo:
A new hardening law of the strain gradient theory is proposed in this paper, which retains the essential structure of the incremental version of conventional J(2) deformation theory and obeys thermodynamic restrictions. The key feature of the new proposal is that the term of strain gradient plasticity is represented as an internal variable to increase the tangent modulus. This feature which is in contrast to several proposed theories, allows the problem of incremental equilibrium equations to be stated without higher-order stress, higher-order strain rates or extra boundary conditions. The general idea is presented and compared with the theory given by Fleck and Hutchinson (Adv. in Appl. Mech. (1997) 295). The new hardening law is demonstrated by two experimental tests i.e. thin wire torsion and ultra-thin beam bending tests. The present theoretical results agree well with the experiment results.
Resumo:
The stability of Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass (BMG) upon isothermal annealing near the glass transition temperature has been investigated by using x-ray diffraction, differential scanning calorimetry, and the pulse echo overlap method. The density, elastic constants, and thermodynamic parameters as well as their annealing time dependence have been determined. The microstructural and properties changes of the annealed BMG were checked by acoustic measurement. Obvious structural and property changes were observed with prolonged annealing of the BMG near the glass transition temperature.
Resumo:
A general formulation of the Helmholtz free energy used in thermodynamics of damage process of rocks is derived within a multi-scale framework. Such a physically-based thermodynamic state potential has a hybrid, discrete/continuum, nature in the sense tha