118 resultados para Theoretical stress concentration factor


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The heme-regulated initiation factor 2 alpha kinase (HRI) is acknowledged to play an important role in translational shutoff in reticulocytes in response to various cellular stresses. In this study, we report its homologous cDNA cloning and characterization from cultured flounder embryonic cells (FEC) after treatment with UV-inactivated grass carp haemorrhagic virus (GCHV). The full-length cDNA of Paralichthys olivaceus HRI homologue (PoHRI) has 2391 bp and encodes a protein of 651 amino acids. The putative PoHRI protein exhibits high identity with all members of eIF2 alpha kinase family. It contains 12 catalytic subdomains located within the C-terminus of all Ser/Thr protein kinases, a unique kinase insertion of 136 amino acids between subdomains IV and V, and a relatively conserved N-terminal domain (NTD). Upon heat shock, virus infection or Poly PC treatment, PoHRI mRNA and protein are significantly upregulated in FEC cells but show different expression patterns in response to different stresses. In healthy flounders, PoHRI displays a wide tissue distribution at both the mRNA and protein levels. These results indicate that PoHRI is a ubiquitous eIF2a kinase and might play an important role in translational control over nonheme producing FEC cells under different stresses. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

光是植物赖以生存的重要环境因子,但是植物在获得光的同时不可避免的会受到紫外辐射的伤害。尤其是近年来,人类向大气中排放的大量氮氧化合物和氟氯烃类化合物(CFC’s)引起臭氧分子的分解,导致到达地球表面的紫外辐射增加,特别是UV-B辐射增强。而另一方面,植物对UV-B辐射反应的敏感性在种间和品种间存在差异,主要受植物基因型,生态型和生活型的控制。本项目分别以粗枝云杉和青杨组杨树为模式植物,从形态和生理生化方面分别研究了来自不同水分背景下的粗枝云杉种群和来自不同UV-B背景下的青杨种群在增强UV-B下的反应及其反应差异,并探讨了干旱、喷施外源脱落酸(ABA)对它们抗UV-B能力的影响。研究成果可为生态系统的恢复与重建提供理论依据和科学指导。主要研究结果如下: 1. 粗枝云杉的两个种群,湿润种群(来自四川黑水)和干旱种群(来自甘肃迭部)在水分良好和干旱状况下表现出对增强UV-B的不同响应。同时,干旱对粗枝云杉抗UV-B能力的影响也得到研究:两种胁迫共同作用时,干旱表现出在一定程度上减弱了增强UV-B对粗枝云杉的生理特性的影响。 干旱胁迫显著降低了两个粗枝云杉种群的光合同化速率(A), 气孔导度(gs)和PSII的有效光量子产量(Y), 同时,提高了非光化学猝灭效率(qN)和超氧化物歧化酶(SOD)的活性。与湿润种群相比,干旱种群抗旱性更强,表现为干旱种群拥有更高的SOD和干旱进一步加剧了UV-B的胁迫效应。 本研究中,干旱胁迫单独作用时,显著降低了青杨两个种群的生物量积累和气体交换,具体包括A、gs、蒸腾速率(E)和光合氮利用效率(PNUE),提高了两个种群的瞬时水分利用效率(WUEi)、长期水分利用效率(WUET)、碳同位素组分(δ13C)和氮含量(N)。同时,UV吸收物质和ABA含量也得到积累。另一方面,增强UV-B对青杨两个种群各个指标的影响,同干旱所引起的效应有着相似的趋势。同低海拔种群相比,高海拔种群有着更强的抗旱和抗UV-B能力,具体表现在高海拔种群有着更多的生物量积累,更强的气体交换和水分利用效率及更高水平的ABA和UV吸收物质含量。相比干旱诱导的生物量积累和气体交换的降低,在干旱和增强UV-B两个胁迫同时作用于青杨时,这种降低表现的更为明显。显著的干旱和UV-B的交互作用还表现在WUEi, WUET, δ13C, 可溶性蛋白含量, UV吸收物质含量, ABA, 叶片和茎中的N含量以及C/N比中。 3. 经过一个生长季的试验观察,增强UV-B、外源ABA及两因子共同作用对青杨的生物量积累、气体交换、内源ABA和UV吸收物质含量、抗氧化系统以及碳、氮含量和碳/氮比均产生显著影响。本试验中,青杨的两个种群分别来自中国西南部的不同海拔地区,高海拔种群来自青海大通而低海拔种群来自四川九寨。外源ABA的胁迫为直接喷施ABA到青杨叶片,而增强UV-B胁迫是利用平方波系统分别保证青杨苗暴露于外界UV-B强度和两倍于外界UV-B强度下。 研究结果显示,增强UV-B显著的降低了两个青杨种群的株高、基茎、总叶面积和总生物量等生长指标,同时也导致其A、gs、E和叶片中碳含量的减少。而显著增加了SOD和过氧化物酶(GPx)活性水平,诱导了过氧化氢(H2O2)和MDA的显著增加,促进了UV吸收物质和不同器官中内源ABA含量的显著积累。另一方面,外源ABA引起了青杨光合同化速率的下降,SOD和GPx酶活性的增强,H2O2 和 MDA含量也表现出显著增加,同时,内源ABA含量得到显著累积。同低海拔种群相比,高海拔种群具有更加抗UV-B和外源ABA的特性。显著的UV-B和ABA的交互作用表现在A, E, SOD和GPx活性,以及叶片和根部的内源ABA等一系列指标中。在所有胁迫下,叶片中的碳和氮含量同其在茎和根中的含量显著相关,另外,叶片和茎中的氮含量同茎中的碳含量显著相关。 Sunlight is an indispensable environment factor for plants survival and development. Meanwhile, photosynthetic organisms need sunlight and are thus, inevitably, exposed to UV radiation. Especially for recent years, ultraviolet radiation, especially UV-B reaching the Earth’s surface increased because of depletion of ozone layer resulted from emission of NxO and CFC’s from human activities. On the other hand, the sensitivity of plants to UV-B radiation depends on the species, developmental stage and experimental conditions. In this experiment, two populations of Picea asperata Mast from different water background and two populations of Populus cathayana Rehder from different altitude background were selected as model plants to assess the effects of enhanced UV-B radiation. Morphological and physiological traits induced by enhanced UV-B in each plant species were observed and the different responses were discussed, furthermore the influences of drought and exogenous ABA on responses induced by enhanced UV-B were studied. The study could provide a strong theoretical evidence and scientific direction for the afforestation and rehabilitation of ecosystem. The results are as follows: 1. Different responses of two contrasting Picea asperata Mast. populations to enhanced ultraviolet-B (UV-B) radiation under well-watered and drought conditions were investigated. And the effects of enhanced UV-B on tolerance of drought were also observed in our study that the UV-B exposure may have alleviated some of the damage induced by drought. Two contrasting populations, originating from a wet and dry climate region in China, respectively, were employed in our study. Drought significantly decreased CO2 assimilation rate (A), stomatal conductance (gs) and effective PSII quantum yield (Y), while it significantly increased non-photochemical quenching (qN) and the activity of superoxide dismutase (SOD) in both populations. Compared with the wet climate population, the dry climate population was more acclimated to drought stress and showed much higher activities of SOD and ascorbate peroxidase (APX), and much lower levels of malondialdehyde (MDA) and electrolyte leakage. On the other hand, enhanced UV-B radiation also induced a significant decrease in the chlorophyll (Chl) content in both populations under well-watered conditions, and a significant increase in UV-absorbing compounds in the wet climate population. After one growing season of exposure to different UV-B levels and watering regimes, the increases in MDA and electrolyte leakage, as induced by drought, were less pronounced under the combination of UV-B and drought. In addition, an additive effect of drought and UV-B on A and gs was observed in the wet climate population, and on the activity of APX and qN in the dry climate population. 2. The significant effects of drought, enhanced UV-B radiation and their combination on Populus cathayana Rehd. growth and physiological traits were investigated in two populations, originating from high and low altitudes in south-west China. Our results showed that UV-B acts as an important signal allowing P. cathayana seedlings to respond to drought and that the combination of drought and UV-B may cause synergistically detrimental effects on plant growth in both populations. In both populations, drought significantly decreased biomass accumulation and gas exchange parameters, including A, gs, E and photosynthetic nitrogen use efficiency (PNUE). However, instantaneous water use efficiency (WUEi), transpiration efficiency (WUET), carbon isotope composition (δ13C) and nitrogen (N) content, as well as the accumulation of soluble protein, UV-absorbing compounds and abscisic acid (ABA) were significantly increased by drought. On the other hand, cuttings from both populations, when kept under enhanced UV-B radiation conditions, showed very similar changes in all above-mentioned parameters, as induced by drought. Compared with the low altitude population, the high altitude population was more tolerant to drought and enhanced UV-B, as indicated by the higher level of biomass accumulation, gas exchange, water-use efficiency, ABA concentration and UV-absorbing compounds. After one growing season of exposure to different UV-B levels and watering regimes, the decrease in biomass accumulation and gas exchange, induced by drought, was more pronounced under the combination of UV-B and drought. Significant interactions between drought and UV-B were observed in WUEi, WUET, δ13C, soluble protein, UV-absorbing compounds, ABA and in the leaf and stem N, as well as in the leaf and stem C/N ratio. 3. During one growing season, significant effects induced by enhanced UV-B radiation, exogenous ABA and their combination on biomass accumulation, gas exchange, endogenous ABA and UV-absorbing compounds concentrations, antioxidant system as well as carbon (C) content, nitrogen (N) content and C/N ratio were investigated in two contrasting Populus cathayana populations, originating from high and low altitudes in south-west China. Exogenous ABA was sprayed to the leaves and enhanced UV-B treatment was using a square-wave system to make the seedlings under ambient (1×) or twice ambient (2×) doses of biologically effective UV-B radiation (UV-BBE). Enhanced UV-B radiation significantly decreased height, basal diameter, total leaf area, total biomass, A, gs, E and carbon (C) content in leaves, and significantly increased activities of SOD and guaiacol peroxidase (GPx), hydrogen peroxide (H2O2) and malonaldehyde (MDA) content as well as the accumulation of UV-absorbing compounds and endogenous ABA concentrations among different organs in both populations. In contrast, exogenous ABA showed significant decrease in A and significant increases in activities of SOD and GPx, H2O2, MDA content and the endogenous ABA concentrations. Compared with the low altitude population, the high altitude population was more tolerant to enhanced UV-B and exogenous ABA. Significant interactions between UV-B and ABA were observed in A, E, activities of SOD and GPx, as well as in endogenous ABA in leaves and roots of both populations. Across all treatments, C and N content in leaves was strongly correlated with those were in stems and roots, respectively. Additionally, leaf and stem N content were significant correlated with stem C content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For metal-matrix composites (MMCs), interfacial debonding between the ductile matrix and the reinforcing hard inclusions is an important failure mode. A fundamental approach to improving the properties of MMCs is to optimize their microstructure to achieve maximum strength and toughness. Here, we investigate the flow stress of a MMC with a nanoscale microstructure similar to that of bone. Such a 'biomorphous' MMC would be made of staggered hard and slender nanoparticles embedded in a ductile matrix. We show that the large aspect ratio and the nanometer size of inclusions in the biomorphous MMC lead to significantly improved properties with increased tolerance of interfacial damage. In this case, the partially debonded inclusions continue to carry mechanical load transferred via longitudinal shearing of the matrix material between neighboring inclusions. The larger the inclusion aspect ratio, the larger is the flow stress and work hardening rate for the composite. Increasing the volume concentration of inclusion also makes the biomorphous MMC more tolerant of interfacial damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An improved electromechanical model of the RF MEMS (radio frequency microelectromechanical systems) switches is introduced, in which the effects of intrinsic residual stress from fabrication processes, axial stress due to stretching of beam, and fringing field are taken into account. Four dimensionless numbers are derived from the governing equation of the developed model. A semi-analytical method is developed to calculate the behavior of the RF MEMS switches. Subsequently the influence of the material and geometry parameters on the behavior of the structure is analyzed and compared, and the corresponding analysis with the dimensionless numbers is conducted too. The quantitative relationship between the presented parameters and the critical pull-in voltage is obtained, and the relative importance of those parameters is given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the statistical thermodynamics theory, a theoretical model of adsorbate induced surface stress of adatoms adsorption on solid surface is presented. For the low coverage, the interaction between the adsorbed molecules is entirely negligible and the adsorption induced surface stress is found to be the function of the coverage and the adsorption energy change with strain. For the high coverage, the adsorbate-adsorbate interaction contributes to the adsorption-induced surface stress effectively. In the case of carbon adsorption on the Ni(100) surface, the value of 0.5 is obtained as a characteristic coverage to decide whether to take the interaction between the adsorabtes into consideration and the results also show that the adsorption induces a compressive surface stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature and stress field in a thin plate with collinear cracks interrupting an electric current field are determined. This is accomplished by using a complex function method that allows a direct means of finding the distribution of the electric current, the temperature and stress field. Temperature dependency for the heat-transfer coefficient, coefficient of linear expansion and the elastic modulus are considered. As an example, temperature distribution is calculated for an alloy (No. GH2132) plate with two collinear cracks under high temperature. Relationships between the stress, temperature, electric density and crack length are obtained. Crack trajectories emanating from existing crack are predicted by application of the strain energy density criterion which can also be used for finding the load carrying capacity of the cracked plate. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coupling of mesoscopic strength distribution and stress fluctuation on damage evolution and rupture are examined. The numerical simulations show that there is only weak stress fluctuation at the initial damage stage when the mean field approximation is in effect. As the damage fraction becomes larger than the threshold value, the fluctuation is amplified significantly, and damage localization appears. The coupling between stress fluctuation, disordered heterogeneity and the damage localization may play an essential role in catastrophic rupture. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of experiments in open channels and closed pipelines show two kinds of patterns for the vertical distribution of particle concentration (i.e., pattern I and pattern II). The former shows a pattern of maximum concentration at some location above the bottom and the downward decay of the concentration below the location. The latter always shows an increase of the particle concentration downward over the whole vertical, with the maximum value at the bottom. Many investigations were made on the pattern II, but few were made on pattern I. In this paper, a particle velocity distribution function is first obtained in the equilibrium state or in dilute steady state for the particle in two-phase flows, then a theoretical model for the particle concentration distribution is derived from the kinetic theory. More attention is paid to the predictions of the concentration distribution of pattern I and comparisons of the present model are made with the data measured by means of laser doppler anemometry (LDA). Very good agreements are obtained between the measured and calculated results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical model has been developed to investigate the microfluidic transport of the signaling chemicals in the cell coculture chips. Using an epidermal growth factor (EGF)-like growth factor as the sample chemical, the effects of velocities and channel geometry were studied for the continuous-flow microchannel bioreactors. It is found that different perfusion velocities must be applied in the parallel channels to facilitate the communication, i.e., transport of the signaling component, between the coculture channels. Such communication occurs in a unidirectional way because the signaling chemicals can only flow from the high velocity area to the low velocity area. Moreover, the effect of the transport of the signaling component between the coculture channels on the growth of the monolayer cells and the multicellular tumor spheroid (MTS) in the continuous-flow coculture environment were simulated using 3D models. The numerical results demonstrated that the concentration gradients will induce the heterogeneous growth of the cells and the MTSs, which should be taken into account in designing the continuous-flow perfusion bioreactor for the cell coculture research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied theoretically the inherent mechanisms of nonvolatile holographic storage in doubly doped LiNbO3 crystals. The photochromic effect of doubly doped LiNbO3 crystals is discussed, and the criterion for this effect is obtained through the photochromism-bleach factor a = S(21)gamma(1)/S(11)gamma(2) that we define. The two-center recording and fixing processes are analytically discussed with extended Kukhtarev equations, and analytical expressions for recorded and fixed steady-state space-charge fields as well as temporal behavior during the fixing process are obtained. The effects of microphysical quantities, the macrophotochromic effect on fixing efficiency, and recorded and fixed steady-state space-charge fields, are discussed analytically and numerically. (C) 2002 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the Mach-Zehnder effect between the core mode and the cladding modes, the interference fringes are formed by a pair of cascaded long-period fiber gratings (CLPFGs). Theoretical analyses show that the spectral spacing and the wavelength of these fringes are functions of the waveguide dispersion factor gamma, which is a characterizing parameter to LPFG and with theoretical and applicational significance. By measuring the characteristics of the transmission spectra of CLPFGs, the absolute value of gamma can be obtained. At the same time, the thermo-optic coefficient of effective refractive index difference between core and cladding modes, p, can also be obtained by measured the temperature sensitivity of these fringes. In the experiments, \gamma\ and mu were measured by this method to be 0.874 and 4.08 x 10(-5) degreesC(-1), respectively, for LPFGs with period of 450 mum and with a HE14 resonant peak at 1554 nm. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method was used to prepare erbium-doped high silica (SiO2% > 96%) glasses by sintering nanoporous glasses. The concentration of erbium ions in high silica glasses can be considerably more than that in silica glasses prepared by using conventional methods. The fluorescence of 1532 nm has an FWHM (Full Wave at Half Maximum) of 50 nm, wider than 35 nm of EDSFA (erbium-doped silica fiber amplifer), and hence the glass possesses potential application in broadband fiber amplifiers. The Judd-Ofelt theoretical analysis reflects that the quantum efficiency of this erbium-doped glass is about 0.78, although the erbium concentration in this glass (6 x 103) is about twenty times higher than that in silica glass. These excellent characteristics of Er-doped high silica glass will be conducive to its usage in optical amplifiers and microchip lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By impairing both function and survival, the severe reduction in oxygen availability associated with high-altitude environments is likely to act as an agent of natural selection. We used genomic and candidate gene approaches to search for evidence of such genetic selection. First, a genome-wide allelic differentiation scan (GWADS) comparing indigenous highlanders of the Tibetan Plateau (3,200 3,500 m) with closely related lowland Han revealed a genome-wide significant divergence across eight SNPs located near EPAS1. This gene encodes the transcription factor HIF2 alpha, which stimulates production of red blood cells and thus increases the concentration of hemoglobin in blood. Second, in a separate cohort of Tibetans residing at 4,200 m, we identified 31 EPAS1 SNPs in high linkage disequilibrium that correlated significantly with hemoglobin concentration. The sex-adjusted hemoglobin concentration was, on average, 0.8 g/dL lower in the major allele homozygotes compared with the heterozygotes. These findings were replicated in a third cohort of Tibetans residing at 4,300 m. The alleles associating with lower hemoglobin concentrations were correlated with the signal from the GWADS study and were observed at greatly elevated frequencies in the Tibetan cohorts compared with the Han. High hemoglobin concentrations are a cardinal feature of chronic mountain sickness offering one plausible mechanism for selection. Alternatively, as EPAS1 is pleiotropic in its effects, selection may have operated on some other aspect of the phenotype. Whichever of these explanations is correct, the evidence for genetic selection at the EPAS1 locus from the GWADS study is supported by the replicated studies associating function with the allelic variants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A recent study has shown that nonanoic acid (NA) is one of the strongest allelochemicals to a cyanobacterium Microcystis aeruginosa, but the physiological responses of M. aeruginosa to NA stress remain unknown. In this study, physiological characters such as the growth rate, photosynthetic processes, phosphorus and nitrogen uptake kinetics, and the contents of intracellular microcystin of M. aeruginosa PCC7806 were studied under the NA stress. The results showed that the growth rates of M. aeruginosa PCC 7806 were significantly inhibited in all NA stress treatments during first 3 days after exposure, and the growth rate was recovered after 5-day exposure. After 2-day exposure, the contents of both phycocyanin and allophycocyanin per cell decreased at NA concentration of 4 mg L-1, and oxygen evolution was inhibited even at the concentration of 0.5 mg L-1, but carotenoid content per cell was slightly boosted in NA stress. Physiological recovery of M. aeruginosa PCC7806 was observed after 7-day exposure to NA. It was shown that NA stress had no effect on uptake of nitrogen, but could stimulate the uptake of phosphorus. The contents of intracellular microcystin have not been affected in all NA treatments in contrast with the control. (C) 2008 Wiley Periodicals, Inc. Environ Toxicol 24: 610-617, 2009.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Submersed macrophytes in eutrophic lakes often experience high NH4+ concentration and low light availability in the water column. This study found that an NH4+-N concentration of 1 mgL(-1) in the water column apparently caused physiological stress on the macrophyte Potamogeton crispus; L The plants accumulated free amino acids (FAA) and lost soluble carbohydrates (SC) under NH4+ stress. These stressful effects of NH4+ were exacerbated under low light availability. Shading significantly increased NH4+ and FAA contents and dramatically decreased SC and starch contents in the plant shoots. At an NH4+-N concentration of 1 mg L-1 in the water column, neither growth inhibition nor NH4+ accumulation was observed in the plant tissues of P. crispus under normal light availability. The results showed that 1 mg L-1 NH4+-N in the water column was not toxic to P. crispus in a short term. To avoid NH4+ toxicity. active NH4+ transportation out of the cell may cost energy and thus result in a decline of carbohydrate. When NH4+ inescapably accumulates in the plant cell, i.e. under NH4+ Stress and shading, NH4+ is scavenged by FAA synthesis. (c) 2009 Published by Elsevier B.V.