74 resultados para Steam-boilers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An effective Mo-1 V(0.3)Te(0.23)Nb(0.12)Ox catalysts for the selective oxidation of propane to acrylic acid was successfully prepared by using rotavap method. The catalyst was characterized by XRD and shown to contain (V0.07Mo0.93)(5)O-14, (Nb0.09Mo0.91)O-2.8,3MoO(2)(.)Nb(2)O(5), Mo5TeO16 and/or TeMo4O13, Te4Nb2O13 and a new TeMO (TeVMoO or TeVNbMoO; M = Mo, V and Nb) crystalline phase as the major phase. Regardless of the intrinsic catalytic characteristics of the catalyst, the external reaction conditions would have strong effects on the catalytic performance for propane oxidation. So in this paper, the effects of reaction conditions were investigated and discussed, including temperature, space velocity, V(air)/V(C3H8) ratio and V(steam)/V(C3H8) ratio. A stability test was also carried out on Mo1V0.3Te0.23Nb0.12Ox catalyst. The experimental run was performed during 100 h under the optimized reaction conditions. During the 100 h of operation, propane conversion and acrylic acid selectivity remained at about 59 and 64%, respectively. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colloidal alumina was used to improve the activity of an In/HZSM-5 catalyst for the selective reduction of NO with CH4 in the excess of oxygen. Compared with In/HZSM-5, the In/HZSM-5/Al2O3 catalyst showed higher activity in a wide range of reaction temperatures. It is visualized that a synergetic effect between In/HZSM-5 and Al2O3 enhances the conversion of NOx. The addition of Al2O3 improved the conversion of NO to NO2 and facilitated the activation of methane. An In/HZSM-5/Al2O3 pre-treated with steam for 15 h at 700 degreesC still showed a high activity for the removal of NOx with methane, while an In/HZSM-5 similarly pre-treated with steam showed a lower activity than the fresh sample. The activity of the In/HZSM-5/Al2O3 catalyst could be restored completely after water vapor was removed from the feed gas. Furthermore, it was found that the In/HZSM-5/Al2O3 remained fairly active under high GHSV and O-2 concentration conditions. It was also interesting to find that an increase in NO content could enhance the conversion of methane, and this illustrates that the existence of NO is beneficial for the activation of methane. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using the solid-state MAS NMR technique, the hydrothermal stabilities (under 100% steam at 1073 K) of HZSM-5 zeolites modified by lanthanum and phosphorus have been studied. They are excellent zeolite catalysts for residual oil selective catalytic cracking (RSCC) processes. It was indicated that the introduction of phosphorus to the zeolite via impregnation with orthophosphoric acid led to dealumination as well as formation of different Al species, which were well distinguished by Al-27 3Q MAS NMR. Meanwhile, the hydrothermal stabilities of the zeolites (P/HZSM-5, La-P/HZSM-5) were enhanced even after the samples were treated under severe conditions for a prolonged time. It was found that the Si-O-Al bonds were broken under hydrothermal conditions, while at the same time the phosphorous compounds would occupy the silicon sites to form (SiO)(x)Al(OP)(4 - x) species. With increasing time, more silicon sites around the tetrahedral coordinated Al in the lattice can be replaced till the aluminum is completely expelled from the framework. The existence of lanthanum can partially restrict the breaking of the Si-O-Al bonds and the replacement of the silicon sites by phosphorus, thus preventing dealumination under hydrothermal conditions. This was also proved by P-31 MAS NMR spectra. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

中国科学院山西煤炭化学研究所

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The essential oil in purple magnolia leaves was extracted by steam distillation approaches. The oil obtained was dried with anhydrous magnesium sulfate. According to the analysis of gas chromatography/mass spectrometry, more than 40 peaks were separated and 32 compounds were identified. The identified constituents represent 95% of the peak area of the essential oil. The main compounds were germacrene-D, santolina triene, caryophyllene, 1,3,7-octatriene, 3,7-dimethyl, and camphene, etc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crosshole Seismic tomography has been broadly studied and applied in the fields of resource exploration and engineering exploration because of its special observing manner and better resolution than normal seismic exploration. This thesis will state the theory and method of Crosshole Seismic tomography. Basing on the previous studies,the thesis studied the initial velocity model,ray-tracing method, and developed the three-dimension tomography software. All the cells that a ray passes through are of the same velocities if the paths from transmitters to receivers are straight. The cells that the each ray passes through are recorded, and rays that pass through each cell are calculated. The ray average velocity which passes through a cell is set as the cell velocity. Analogously we can make a initial node velocity model because the velocity sum is calculated on the all cells which own to a certain node, and the cell number is summed about each nodes,the ratio of the velocity sum to the all cells number is set as the node velocity. The inversion result from the initial node velocity model is better than that of the average velocity model. Ray-bending and Shortest Path for Rays (SPR) have shortcomings and limitations respectively. Using crooked rays obtained from SPR rather than straight lines as the starting point can not only avoid ray bending converging to the local minimum travel time path, but also settle the no smooth ray problem obtained by SPR. The hybrid method costs much computation time, which is roughly equal to the time that SPR expends. The Delphi development tool based on the Object Pascal language standard has an advantage of object-oriented. TDTOM (Three Dimensions Tomography) was developed by using Delphi from the DOS version. Improvement on the part of inversion was made, which bring faster convergence velocity. TDTOM can be used to do velocity tomography from the first arrival travel time of the seismic wave, and it has the good qualities of friendly user interface and convenient operation. TDTOM is used to reconstruct the velocity image for a set of crosshole data from Karamay Oil Field. The geological explanation is then given by comparing the inversion effects of different ray-tracing methods. High velocity zones mean the cover of oil reservoir, and low velocity zones correspond to the reservoir or the steam flooding layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cross well seismic technique is a new type of geophysical method, which observes the seismic wave of the geologic body by placing both the source and receiver in the wells. By applying this method, it averted the absorption to high-frequency component of seismic signal caused by low weathering layers, thus, an extremely high-resolution seismic signal can be acquired. And extremely fine image of cross well formations, structure, and reservoir can be achieved as well. An integrated research is conducted to the high-frequency S-wave and P-wave data and some other data to determine the small faults, small structure and resolving the issues concerning the thin bed and reservoir's connectivity, fluid distribution, steam injection and fracture. This method connects the high-resolution surface seismic, logging and reservoir engineering. In this paper, based on the E & P situation in the oilfield and the theory of geophysical exploration, a research is conducted on cross well seismic technology in general and its important issues in cross well seismic technology in particular. A technological series of integrated field acquisition, data processing and interpretation and its integrated application research were developed and this new method can be applied to oilfield development and optimizing oilfield development scheme. The contents and results in this paper are as listed follows: An overview was given on the status quo and development of the cross well seismic method and problems concerning the cross well seismic technology and the difference in cross well seismic technology between China and international levels; And an analysis and comparison are given on foreign-made field data acquisition systems for cross-well seismic and pointed out the pros and cons of the field systems manufactured by these two foreign companies and this is highly valuable to import foreign-made cross well seismic field acquisition system for China. After analyses were conducted to the geometry design and field data for the cross well seismic method, a common wave field time-depth curve equation was derived and three types of pipe waves were discovered for the first time. Then, a research was conducted on the mechanism for its generation. Based on the wave field separation theory for cross well seismic method, we believe that different type of wave fields in different gather domain has different attributes characteristics, multiple methods (for instance, F-K filtering and median filtering) were applied in eliminating and suppressing the cross well disturbances and successfully separated the upgoing and downgoing waves and a satisfactory result has been achieved. In the area of wave field numerical simulation for cross well seismic method, a analysis was conducted on conventional ray tracing method and its shortcomings and proposed a minimum travel time ray tracing method based on Feraiat theory in this paper. This method is not only has high-speed calculation, but also with no rays enter into "dead end" or "blinded spot" after numerous iterations and it is become more adequate for complex velocity model. This is first time that the travel time interpolation has been brought into consideration, a dynamic ray tracing method with shortest possible path has been developed for the first arrivals of any complex mediums, such as transmission, diffraction and refraction, etc and eliminated the limitation for only traveling from one node to another node and increases the calculation accuracy for minimum travel time and ray tracing path and derives solution and corresponding edge conditions to the fourth-order differential sonic wave equation. The final step is to calculate cross well seismic synthetics for given source and receivers from multiple geological bodies. Thus, real cross-well seismic wave field can be recognized through scientific means and provides important foundation to guide the cross well seismic field geometry designing. A velocity tomographic inversion of the least square conjugated gradient method was developed for cross well seismic velocity tomopgraphic inversion and a modification has been made to object function of the old high frequency ray tracing method and put forward a thin bed oriented model for finite frequency velocity tomographic inversion method. As the theory model and results demonstrates that the method is simple and effective and is very important in seismic ray tomographic imaging for the complex geological body. Based on the characteristics of the cross well seismic algorithm, a processing flow for cross well seismic data processing has been built and optimized and applied to the production, a good section of velocity tomopgrphic inversion and cross well reflection imaging has been acquired. The cross well seismic data is acquired from the depth domain and how to interprets the depth domain data and retrieve the attributes is a brand new subject. After research was conducted on synthetics and trace integration from depth domain for the cross well seismic data interpretation, first of all, a research was conducted on logging constraint wave impedance of cross well seismic data and initially set up cross well seismic data interpretation flows. After it applied and interpreted to the cross well seismic data and a good geological results has been achieved in velocity tomographic inversion and reflection depth imaging and a lot of difficult problems for oilfield development has been resolved. This powerful, new method is good for oilfield development scheme optimization and increasing EOR. Based on conventional reservoir geological model building from logging data, a new method is also discussed on constraining the accuracy of reservoir geological model by applying the high resolution cross well seismic data and it has applied to Fan 124 project and a good results has been achieved which it presents a bight future for the cross well seismic technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selective reduction of NO by CH4 on an In-Fe2O3/H-ZSM-5 catalyst was investigated in the presence of excess oxygen. Compared with In/H-ZSM-5, the In-Fe2O3/H-ZSM-5 catalyst with high Fe2O3 contents showed higher activity in a wide range of reaction temperatures. It was found that the addition of Fe2O3 yielded a promotion effect on CH4 activation. The influence of water vapor on NO conversion was also investigated. The activity of the In/H-ZSM-5 catalyst has been found to be strongly inhibited by water vapor, while the In-Fe2O3/H-ZSM-5 catalyst remained fairly active in the presence of 3.3% steam. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A bench scale reaction test for methane aromatization in the absence of an added oxidant was performed and its reaction result evaluated based on the carbon balance of the system. The result was compared with those obtained from the micro-reaction test to ensure the accuracy of the internal standard analyzing method employed in this paper. The catalytic performances of modified Mo/HZSM-5 catalysts were examined. It was found that pre-treatment by steam on HZSM-5 weakened the serious deposition of coke, and pre-impregnation of n-ethyl silicate on HZSM-5 could improve the conversion of CH4, but had little effect on coke formation. A low temperature activation procedure including pre-reduction of the catalyst with methane prevents the zeolite lattice from being seriously destroyed by high valence state Mo species when the Mo loading is high. It was suggested that Mo2C species detected by XRD spectra was the active phase for CH4 aromatization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal and hydrothermal stabilities of HZSM-5 zeolites with crystal sizes less than 100 nm have been studied by multinuclear solid-state NMR, combined with BET and XRD. As evidenced by Al-27 and Si-29 MAS as well as their corresponding cross-polarization/MAS NMR investigations, the thermal stability of nanosized HZSM-5 is not so good as that of microsized HZSM-5. This is due to two processes concerning dealumination and desilicification involved in the calcination of nanosized HZSM-5, while only the dealumination process is conducted in microsized HZSM-5 under the similar calcination process. The hydrothermal stability of nanosized HZSM-5 is, contrary to what was expected, not so bad as that of the microsized HZSM-5 in the course of steam treatment. The actual resistance of the hydrothermal stability to the crystal size of HZSM-5 can be ascribed to an active reconstruction of zeolitic framework through an effective filling of amorphous Si species into nanosized HZSM-5 during hydrothermal treatment. (C) 2001 Published by Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fuel cells are recognized as the most promising new power generation technology, but hydrogen supply is still a problem. In our previous work, we have developed a LiLaNiO/gamma-Al2O3 catalyst, which is excellent not only for partial oxidation of hydrocarbons, but also for steam reforming and autothermal reforming. However, the reaction needs pure oxygen or air as oxidant. We have developed a dense oxygen permeable membrane Ba0.5Sr0.5Co0.8Fe0.2O3 which has an oxygen permeation flux around 11.5 ml/cm(2) min at reaction conditions. Therefore, this work is to combine the oxygen permeable membrane with the catalyst LiLaNiO/gamma-Al2O3 in a membrane reactor for hydrogen production by mixed reforming of heptane. Under optimized reaction conditions, a heptane conversion of 100%, a CO selectivity of 91-93% and a H-2 selectivity of 95-97% have been achieved. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Naphtha catalytic cracking were carried out at 650 degrees C over modified ZSM-5. Light olefins and BTX could be obtained over the catalysts. The products showed variable distribution with different catalyst modification. Some modification, such as Fe, Cu and La favored the BTX generation and P and Mg modification favored the light olefins production. In N-2 stream cracking catalyzed by LaZSM-5, more than 50% naphtha feed were converted to BTX, while in steam cracking, with an improved modified catalyst, P, La/ZSM-5, naphtha can be converted to light olefins with high activity and long-term stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cobalt carbide (Co2C) species was formed in some activated carbon supported cobalt-based (Co/AC) catalysts during the activation of catalysts. It was found that the activity of Fischer-Tropsch reaction over Co-based catalysts decreased due to the formation of cobalt carbide species. Some promoters and pretreatment of activated carbon with steam could restrain the formation of cobalt carbide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an attempt to effectively integrate catalytic partial oxidation (CPO) and steam reforming (SR) reactions on the same catalyst, autothermal reforming (ATR) of n-octane was addressed based on thermodynamic analysis and carried out on a non-pyrophoric catalyst 0.3 wt.% Ru/K2O-CeO2/gamma-Al2O3. The ATR of n-octane was more efficient at the molar ratio Of O-2/C 0.35-0.45 and H2O/C 1.6-2.2 (independent parameters), respectively, and reforming temperature of 750-800 degrees C (dependent parameter). Among the sophisticated reaction network, the main reaction thread was deducted as: long-chain hydrocarbon -> CH4, short-chain hydrocarbon -> CO2, CO and H-2 formation by steam reforming, although the parallel CPO, decomposition and reverse water gas shift reaction took place on the same catalyst. Low temperature and high steam partial pressure had more positive effect on CH4 SR to produce CO2 other than CO. This was verified by the tendency of the outlet reformate to the equilibrium at different operation conditions. Furthermore, the loss of active components and the formation of stable but less active components in the catalyst in the harsh ATR atmosphere firstly make the CO inhibition capability suffer, then eventually aggravated the ATR performance, which was verified by the characterizations of X-ray fluorescence, BET specific surface areas and temperature programmed reduction. (c) 2005 Elsevier B.V. All rights reserved.