165 resultados para Spherical silica particles


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anew class of bifunctional architecture combining the useful functions of superparamagnetism and terbium complex luminescence into one material has been prepared via two main steps by a modified Stober method and the layer-by-layer (LbL) assembly technique. The obtained bifunctional nanocomposites exhibit superparamagnetic behavior, high fluorescence intensity, and color purity. The architecture has been characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), UV-vis absorption and emission spectroscopy, X-ray diffraction, and superconducting quantum interference device (SQUID) magnetometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spherical and submicrometer-sized hollow Gd2O3:Eu3+ phosphors were prepared by homogeneous precipitation and hydrothermal method by varying the concentrations of reactants and changing the synthesis conditions. In the precipitation step, the spherical nucleus was formed and grew to large particles. In the hydrothermal step, the large particles crystallized to solid or hollow spheres. At last, Gd2O3:Eu3+ phosphors were obtained by annealing at the temperature more than 600 degrees C. The deduced mechanics of forming the solid and hollow spheres was proposed. And the obtained spherical Gd2O3:Eu3+ phosphors had better red luminescence properties. The relative luminescence intensity and the lifetime increased with increasing annealing temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystalline Y2O3:Eu is of paramount significance in rare earth materials and research on luminescence spectra. In this work, the nanocrystalline Y2O3:Eu was coated with silica by a facile solid state reaction method at room temperature. The transmission electron microscope (TEM) photographs showed that the prepared Y2O3:Eu particle is polycrystalline with the size of 20 nm, the size of silica-coated particle is about 25 nm. The XPS spectra indicated that the silica layer is likely to interact with Y2O3:Eu by a Si-O-Y chemical bond. The luminescence spectra showed that the intensity of ground samples is lower than that of unground ones, the intensity of silica-coated phosphors is higher than that of the ground samples, while almost the same as that of the unground ones. Therefore, the silica coating decreases the surface defects of nanoparticles of the nanocrystalline Y2O3:Eu, thus increasing their luminescent intensity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SiO2/polyacrylamide (PAM) composite was prepared via the polymerization of acrylamide in the presence of silica sol in water/hexane emulsion, and pure SiO2 was also prepared without the use of acrylamide in the same way. Field emission scanning electron micrographs (FESEM) showed that PAM covered the silica nanoparticles to form SiO2/PAM nanospheres, which loosely agglomerated to form SiO2/PAM secondary particles, while SiO2 secondary particles were made up of tightly agglomerated silica nanoparticles. Metallocene catalyst was then immobilized over SiO2 and SiO2/PAM respectively to prepare supported metallocene catalyst for ethylene polymerization. Transmission electron micrographs (TEM) showed that support particles broke up to smaller particles and even nanoparticles in polyethylene (PE) matrix when the support particles were the fragile SiO2/PAM secondary particles, which shows a novel way to prepare silica/polyacrylamide/polyethylene nanocomposite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A facile strategy for the in situ synthesis of terbium complex-silica nanocomposites is described. The resultant spherical nanocomposites possess good monodispersity and exhibit luminescent properties of terbium complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gradient colloidal crystals with a thickness gradient were prepared by the vertical deposition technique with vertically graded concentration suspensions. The thickness of the gradient colloidal crystal gradually changes at different positions along the specific gradient direction of the crystal. The thickness gradient was determined by the concentration gradient, depending on the initial colloidal concentration and the settling time. The optical transmission intensity at the dip wavelength can be tuned by changing the thickness of the colloidal crystals. The gradient colloidal crystals lead to a gradient of optical intensity at the dip in transmission light. The gradient of optical intensity at the dip increases as the thickness gradient of the colloidal crystal increases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The catalytic properties of silver nanoparticles supported on silica and the relation between catalytic activity of silver particles and the support (silica) size are investigated in the present article. The silver nanoparticles with 4 nm diameters were synthesized and were attached to silica spheres with sizes of 40, 78, 105 nm, respectively. The reduction of Rhodamine 6G (R6G) by NaBH4 was designed by using the SiO2/Ag core-shell nanocomposites as catalysts. The experimental results demonstrated that the catalytic activity of silica/silver nanoparticles depends on not only the concentration of catalysts (silver) but also the support silica size. Silver particles supported on small SiO2 spheres (similar to 40 nm) show high catalytic activity. Moreover, by making a comparison between the UV-vis spectra of the catalyst before and after the catalytic reaction, we found that the position of surface plasma resonance (SPR) peak of Ag nanoparticles changes little. The above results suggested that the size and morphology of silver particles were probably kept unchanged after the reduction of R6G and also implied that the catalytic activity of silver particles was hardly lost during the catalytic reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SiO2@Gd2MoO6:EU3+ core-shell phosphors were prepared by the sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy ITEM), photoluminescence (PL) spectra as well as kinetic decays were used to characterize the resulting SiO2@Gd2MoO6:Eu3+ core-shell phosphors. The XRD results demonstrate that the Gd2MoO6:Eu3+ layers on the SiO2 spheres begin to crystallize after annealing at 600 degrees C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have a near perfect spherical shape with narrow size distribution (average size ca. 600 nm), are not agglomerated, and have a smooth surface. The thickness of the Gd2MoO6:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). The Eu3+ shows a strong PL luminescence (dominated by D-5(0)-F-7(2) red emission at 613 nm) under the excitation of 307 nm UV light.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A blue emitting Sr2CeO4 phosphor with a one-dimensional structure has been prepared by a two-step spray pyrolysis (SP) method, starting from the aqueous solutions of metal nitrates with citric acid and polyethylene glycol (PEG) as additives. The material is ultimately designed for field emission displays (FEDs). X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), field emission scanning electron microscope pictures (FE-SEM) as well as photoluminescence (PL) and cathodoluminescence (CL) spectroscopy and lifetime measurements have been employed to characterize the samples. The morphology, PL and low voltage CL properties of Sr2CeO4 phosphors as-prepared using the SP method have been investigated by changing the concentration of the precursor solution, concentration of PEG, annealing temperature, acceleration voltage and filament current. The obtained Sr2CeO4 phosphor particles are spherical and of submicron size, 0.5-2 mu m. The emission spectrum of the phosphors shows a broad band with maximum at 467 nm (lifetime = 37.4 mu s; CIE chromaticity coordinates: x = 0.15 and y = 0.21), presumably due to a ligand-to-metal charge-transfer transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a simple approach to fabricate aggregates composed of monodispersed silica microspheres by modified micromolding in capillaries (MIMIC). Two different kinds of contact modes, namely, conformal contact and non-conformal contact, between the poly(dimethylsiloxane) (PDMS) mold and the underlying prepatterned substrate, can be controlled during the micromolding, which result in the formation of different aggregates under the influence of template confinement and capillary forces. These aggregates, including woodpile structure, discoid, conoid and rectangular clusters, possess well-controlled sizes and orientation. The possible mechanisms for the formation of different aggregates are discussed in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evaporation of a droplet of silica microsphere suspension on a polystyrene and poly(methyl methacrylate) blend film with isolated holes in its surface has been exploited as a means of particles self-assembly. During the retraction of the contact line of the droplet, spontaneous dewetting combined with the strong capillary force pack the silica microspheres into the holes in the polymer surface. Complex aggregates of colloids are formed after being exposed to acetone vapor. The morphology evolution of the underlying polymer film by exposure to acetone solvent vapor is responsible for the complex aggregates of colloids formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(ethyl acrylate) (PEA)/SiO2 hybrids with different compositions were prepared under different casting temperatures and pH values. Their morphology as investigated by transmission electron microscopy (TEM) shows that samples with different compositions have different morphologies. When the SiO2 content is lower, PEA is the continuous phase and SiO2 is the dispersed phase. At higher SiO2 content, the change in phase morphology takes place, nd PEA gradually dispersing in the form of latex particles in SiO2 matrix. Change in phase morphology depends mainly on the time the sol-gel transition occurs. At suitable casting temperature and pH value, PEA/SiO2 in 95/5 and 50/50 hybrids with even dispersion was obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The different poly (methyl methacrylate) (PMMA) /SiO2 hybrids were prepared through sol-gel method involving PMMA emulsion (emulsion method) and PMMA/THF solution (solution method). The samples were characterized by differential scanning calorimetry(DSC), thermogravimetry analysis(TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that PMMA/SiO2 composites in nanoscale were prepared by emulsion method, and its size of phase heterogeneity was less than that of solution method. Meanwhile, the polymer emulsion as the reactive medium was more suitable for the formation of SiO2 network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we report on an approach of using an emulsion polymerized polymer in preparing organic-inorganic nanocomposites through a sol-gel technique. By mixing a polymer emulsion with prehydrolyzed tetraethoxysilane transparent poly(butyl methacrylate)/SiO2, nanocomposites were prepared as shown by TEM. AFM, FTIR, and XPS results show that there is a strong interaction between polymer latex particles and the SiO2 network. Comparison of the emulsion method with a traditional solution method shows that nanocomposites can be prepared by both methods, but there is some difference in their morphology and properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates analytically the electric field distribution of graded spherical core-shell metamaterials, whose permittivity is given by the graded Drude model. Under the illumination of a uniform incident optical field, the obtained results show that the electrical field distribution in the shell region is controllable and the electric field peak's position inside the spherical shell can be confined in a desired position by varying the frequency of the optical field as well as the parameters of the graded dielectric profiles. It has also offered an intuitive explanation for controlling the local electric field by graded metamaterials.