64 resultados para Skin Aging


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan and carboxymethl-chitosan (CM-chitosan) membranes with different molecular mass were prepared by a casting method. The cytocompatibility of two kinds of polysaccharide membranes to skin fibroblasts that cultured in vitro were studied. The methods were to culture the cells in soaking fluid of membranes and to culture the cells on the membranes directly. The results showed that the soaking fluid had no toxicity to fibroblasts and the biological security of lower molecular mass membranes were better than higher molecular mass membranes, and CM-chitosan membranes were better than chitosan membranes. In addition, the growth of fibroblasts on chitosan membranes was inhibited and the cells would fall off from chitosan membranes after a period of culture. However, the cells adhered and expanded well on CM-chitosan membranes. All these demonstrated that cytocompatibility of CM-chitosan membranes to skin fibroblasts was better than chitosan membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulfated polysaccharide fraction F2 from Porphyra haitanesis (Rhodephyta) showed inhibitory effect on the in vitro lipid peroxidation. In the present study, the age-related changes in the antioxidant enzyme activity, lipid peroxidation, and total antioxidant capacity (TAOC) in different organs in mice were investigated and the in vivo antioxidant effect of F2 in aging mice was checked. Increased endogenous lipid peroxidation and decreased TAOC were observed in aging mice. Intraperitoneal administration of F2 significantly decreased the lipid peroxidation in a dose-dependent manner. F2 treatment increased TAOC and the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in all the organs tested in aging mice. It is concluded that the sulfated polysaccharide fraction F2 can be used in compensating the decline in TAOC and the activities of antioxidant enzymes and thereby reduces the risks of lipid peroxidation. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MP-25 resin is a chlorine-containing polymer widely used in coatings. The effects of two types of nano-TiO2 (P-25 and RM301 LP) on MP-25 were studied with saline immersion, UV irradiation, and electrochemical impedance spectroscopy. UV irradiation was evaluated in terms of gloss change and X-ray photoelectron spectroscopy (XPS). The results indicate that, compared to pigment R-930 TiO2, P-25 reduced the immersion resistance and accelerated UV aging of the MP-25 coating, whereas RM301 LP showed the opposite effects. XPS analysis showed that MP-25 resin degraded under UV irradiation via dechlorination and C-C bond breakage, similarly to poly(vinyl chloride), but RM301 LP could inhibit the aging of MP-25 to a certain extent. A skin effect of oxygen and chlorine was identified in MP-25 resin by XPS. RM301 LP could improve the impedance of the MP-25 coating because of its excellent fill capacity. Hence, rutile nano-TiO2 RM301 LP represents an excellent additive for MP-25 resin. (c) 2007 Wiley Periodicals, Inc.