72 resultados para Single-phase Solar Inverters
Resumo:
A novel method incorporating the shielded method and the post-processing method has been proposed to fabricate the pi-phase-shilted fibre grating. Then an Er-doped pi-phase-shifted distributed feedback fibre grating laser has been fabricated using the grating. The laser threshold is 20 mW. When pumped with 90 mW light at 980 nm, the laser gives an output of 1.1 mW. Its signal-to-noise ratio is better than 60 dB. It is demonstrated that the laser is single mode operation by means of a Fabry-Perot scanning interferometer.
Resumo:
This paper proposes a novel phase-locked loop (PLL) frequency synthesizer using single-electron devices (SEDs) and metal-oxide-semiconductor (MOS) field-effect transistors. The PLL frequency synthesizer mainly consists of a single-electron transistor (SET)/MOS hybrid voltage-controlled oscillator circuit, a single-electron (SE) turnstile/MOS hybrid phase-frequency detector (PFD) circuit and a SE turnstile/MOS hybrid frequency divider. The phase-frequency detection and frequency-division functions are realized by manipulating the single electrons. We propose a SPICE model to describe the behavior of the MOSFET-based SE turnstile. The authors simulate the performance of the PILL block circuits and the whole PLL synthesizer. Simulation results indicated that the circuit can well perform the operation of the PLL frequency synthesizer at room temperature. The PILL synthesizer is very compact. The total number of the transistors is less than 50. The power dissipation of the proposed PLL circuit is less than 3 uW. The authors discuss the effect of fabrication tolerance, the effect of background charge and the SE transfer accuracy on the performance of the PLL circuit. A technique to compensate parameter dispersions of SEDs is proposed.
Resumo:
On the basis of integrated intensity of rocking curves, the multiplicity factor and the diffraction geometry factor for single crystal X-ray diffraction (XRD) analysis were proposed and a general formula for calculating the content of mixed phases was obtained. With a multifunction four-circle X-ray double-crystal diffractometer, pole figures of cubic (002), {111} and hexagonal {1010} and reciprocal space mapping were measured to investigate the distributive character of mixed phases and to obtain their multiplicity factors and diffraction geometry factors. The contents of cubic twins and hexagonal inclusions were calculated by the integrated intensities of rocking curves of cubic (002), cubic twin {111}, hexagonal {1010} and {1011}.
Resumo:
A rapid algorithm for phase and amplitude reconstruction from a single spatial-carrier interferogram is proposed by bringing a phase-shifting mechanism into reconstruction of a carrier-frequency interferogram. The algorithm reconstructs phase through directly obtaining and integrating its real-value derivatives, avoiding a phase unwrapping process. The proposed method is rapid and easy to implement and is made insensitive to the profile of the interferogram boundaries by choosing a suitable integrating path. Moreover, the algorithm can also be used to reconstruct the amplitude of the object wave expediently without retrieving the phase profile in advance. The feasibility of this algorithm is demonstrated by both numerical simulation and experiment. (c) 2008 Optical Society of America.
Resumo:
The novel phase field model with the "polymer characteristic" was established based on a nonconserved spatiotemporal Ginzburg-Landau equation (TDGL model A). Especially, we relate the diffusion equation with the crystal growth faces of polymer single crystals. Namely, the diffusion equations are discretized according to the diffusion coefficient of every lattice site in various crystal growth faces and the shape of lattice is selected based on the real proportion of the unit cell dimensions.
Resumo:
We report single mode and multimodes lasing emission from conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) doped polystyrene ( PS) thin films with surface ripples. Surface ripples were formed by water vapour-induced phase separation. A single mode lasing emission at 606 nm with a line-width of less than 0.4 nm was obtained. The laser threshold was as low as 3.5 mu J pulse(-1). The side mode suppression ratio was 5.76 dB. The periodic changes of the refraction index in the MEH-PPV : PS blending film due to the phase separation should be attributed to the lasing actions.
Resumo:
Single-walled carbon nanohorn (SWCNH) was developed as new adsorbent for solid-phase extraction using 4-nitrophenol as representative. The unique exoteric structures and high surface area of SWCNH allow extracting a large amount of 4-nitrophenol over a short time. Highly sensitive determination of 4-nitrophenol was achieved by linear sweep voltammetry after only 120 s extraction. The calibration plot for 4-nitrophenol determination is linear in the range of 5.0 x 10(-8) M-1.0 x 10(-5) M under optimum conditions. The detection limit is 1.1 x 10(-8) M. The proposed method was successfully employed to determine 4-nitrophenol in lake water samples, and the recoveries of the spiked 4-nitrophenol were excellent (92-106%).
Resumo:
A new orthorhombic phase of BaEu2Mn2O7 with the space group of Ccmm (no.63) was identified for single crystals after heat treatment and its Crystal Structure was determined by single crystal X-ray diffractometry. The volume Of the unit cell has twice the fundamental tetragonal cell and corner-shared MnO6 octahedra are slightly distorted and Mn-O-Mn angle between the neighboring octahedra tilts with an angle by around 3 degrees from b-axis. It is concluded from the results of the heat treatment of single crystals at various temperatures that this orthorhombic phase changes into a tetragonal One With superstructure (P4(2)/mnm) at 402 K and changes once more into the fundamental tetragonal phase (I4/mmm) above 552 K. The tetragonal phase with superstructure which has been expected to be an unstable one is stable between the two temperatures.
Resumo:
The probability distribution of the four-phase invariants in the case of single isomorphous replacement has been developed to estimate some individual phases. An example of its application to obtain the phases having special values of 0, pi or +/-pi /2 is given for a known protein structure in space group P2(1)2(1)2(1). The phasing procedure includes the determination of starting phases and an iterative calculation. The initial values of starting phases, which are required by the formula, can be obtained from the estimate of one-phase seminvariants and by specifying the origin and enantiomorph. In addition, the calculations lead to two sets of possible phases for each type of reflection by assigning arbitrarily an initial phase value. The present method provides a possibility for the multisolution technique to increase greatly the number of known phases while keeping the number of the trials quite small.
Resumo:
A method for estimating the one-phase structure seminvariants (OPSSs) having values of 0 or pi has been proposed on the basis of the probabilistic theory of the three-phase structure invariants for a pair of isomorphous structures [Hauptman (1982). Acta Cryst. A38, 289-294]. The test calculations using error-free diffraction data of protein cytochrome c(550) and its PtCl42- derivative show that reliable estimates of a number of the OPSSs can be obtained. The reliability of the estimation increases with the increase of the differences between diffraction intensities of the native protein and its heavy-atom derivative. A means to estimate the parameters of the distribution from the diffraction ratio is suggested.