294 resultados para Simulate
Resumo:
The gas flows in micro-electro-mechanical systems possess relatively large Knudsen number and usually belong to the slip flow and transitional flow regimes. Recently the lattice Boltzmann method (LBM) was proposed by Nie et al. in Journal of Statistical Physics, vol. 107, pp. 279-289, in 2002 to simulate the microchannel and microcavity flows in the transitional flow regime. The present article intends to test the feasibility of doing so. The results of using the lattice Boltzmann method and the direct simulation Monte Carlo method show good agreement between them for small Kn (Kn = 0.0194), poor agreement for Kn = 0.194, and large deviation for Kn = 0.388 in simulating microchannel flows. This suggests that the present version of the lattice Boltzmann method is not feasible to simulate the transitional channel flow.
Resumo:
The compressible Navier-Stokes equations discretized with a fourth order accurate compact finite difference scheme with group velocity control are used to simulate the Richtmyer-Meshkov (R-M) instability problem produced by cylindrical shock-cylindrical material interface with shock Mach number Ms = 1.2 and density ratio 1:20 (interior density/outer density). Effect of shock refraction, reflection, interaction of the reflected shock with the material interface, and effect of initial perturbation modes on R-M instability are investigated numerically. It is noted that the shock refraction is a main physical mechanism of the initial phase changing of the material surface. The multiple interactions of the reflected shock from the origin with the interface and the R-M instability near the material interface are the reason for formation of the spike-bubble structures. Different viscosities lead to different spike-bubble structure characteristics. The vortex pairing phenomenon is found in the initial double mode simulation. The mode interaction is the main factor of small structures production near the interface.
Resumo:
The stress-strain relations of nanocrystalline twin copper with variously sized grains and twins are studied by using FEM simulations based on the conventional theory of mechanism-based strain gradient plasticity (CMSG). A model of twin lamellae strengthening zone is proposed and a cohesive interface model is used to simulate grain-boundary sliding and separation. Effects of material parameters on stress-strain curves of polycrystalline twin copper are studied in detail. Furthermore, the effects of both twin lamellar spacing and twin lamellar distribution on the stress-strain relations are investigated under tension loading. The numerical simulations show that both the strain gradient effect and the material hardening increase with decreasing the grain size and twin lamellar spacing. The distribution of twin lamellae has a significant influence on the overall mechanical properties, and the effect is reduced as both the grain size and twin lamellar spacing decrease. Finally, the FEM prediction results are compared with the experimental data.
Resumo:
Concrete is usually described as a three-phase material, where matrix, aggregate and interface zones are distinguished. The beam lattice model has been applied widely by many investigators to simulate fracture processes in concrete. Due to the extremely large computational effort, however, the beam lattice model faces practical difficulties. In our investigation, a new lattice called generalized beam (GB) lattice is developed to reduce computational effort. Numerical experiments conducted on a panel subjected to uniaxial tension show that the GB lattice model can reproduce the load-displacement curves and crack patterns in agreement to what are observed in tests. Moreover, the effects of the particle overlay on the fracture process are discussed in detail. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
An axisymmetric model is adopted to simulate the problem of unsteady drop thermocapillary motion for large Marangoni numbers. Front tracking methods are used in the investigation. It is found that the non-dimensional drop migration velocity will decrease with increasing Marangoni number. This agrees well with the experimental results obtained from the 4th Shen-Zhou space ship. In the meanwhile, this is also the first time for numerical simulations to verify the experimental phenomenon under large Marangoni numbers.
Resumo:
In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory model with reacting particle phase, is developed and employed to simulate the 3-D turbulent two-phase hows and combustion in a new type of pulverized-coal combustor with one primary-air jet placed along the wall of the combustor. The results show that: (1) this continuum-trajectory model with reacting particle phase can be used in practical engineering to qualitatively predict the flame stability, concentrations of gas species, possibilities of slag formation and soot deposition, etc.; (2) large recirculation zones can be created in the combustor, which is favorable to the ignition and flame stabilization.
Resumo:
Fatigue testing was conducted using a kind of triangular isostress specimen to obtain the short-fatigue-crack behaviour of a weld low-carbon steel. The experimental results show that short cracks continuously initiate at slip bands within ferrite grain domains and the crack number per unit area gradually increases with increasing number of fatigue cycles. The dispersed short cracks possess an orientation preference, which is associated with the crystalline orientation of the relevant slip system. Based on the observed collective characteristics, computer modelling was carried out to simulate the evolution process of initiation, propagation and coalescence of short cracks. The simulation provides progressive displays which imitate the appearance of experimental observations. The results of simulation indicate that the crack path possesses a stable value of fractal dimension whereas the critical value of percolation covers a wide datum band, suggesting that the collective evolution process of short cracks is sensitive to the pattern of crack site distribution.
Resumo:
Molecular dynamics simulations are carried out in order to study the atomic structure of crystalline component, of nanocrystalline alpha-Fe when it is consolidated from small grains. A two-dimensional computational block is used to simulate the consolidation process. All the preset dislocations in the original grains glide out of them in the consolidation process, but new dislocations can generate when the grain size is large enough. It shows that dislocations exist in the consolidated material rather than in the original grains. Whether dislocations exist in the crystalline component of the resultant model nana-material depends upon grain size. The critical value of grain size for dislocation generation appears to be about 9 nm. This result agrees with experiments qualitatively.
Resumo:
In this paper, a dynamic damage model in ductile solids under the application of a dynamic mean tensile stress is developed. The proposed model considers void nucleation and growth as parts of the damage process under intense dynamic loading (strain rates epsilon greater than or equal to 10(3) s(-1)). The evolution equation of the ductile void has the closed form, in which work-hardening behavior, rate-dependent contribution and inertial effects are taken into account. Meanwhile, a plate impact test is performed for simulating the dynamic fracture process in LY12 aluminum alloy. The damage model is incorporated in a hydrodynamic computer code, to simulate the first few stress reverberations in the target as it spalls and postimpact porosity in the specimen. Fair agreement between computed and experimental results is obtained. Numerical analysis shows that the influence of inertial resistance on the initial void growth in the case of high loading rate can not be neglected. It is also indicated that the dynamic growth of voids is highly sensitive to the strain rates.
Resumo:
In order to obtain an overall and systematic understanding of the performance of a two-stage light gas gun (TLGG), a numerical code to simulate the process occurring in a gun shot is advanced based on the quasi-one-dimensional unsteady equations of motion with the real gas effect,;friction and heat transfer taken into account in a characteristic formulation for both driver and propellant gas. Comparisons of projectile velocities and projectile pressures along the barrel with experimental results from JET (Joint European Tons) and with computational data got by the Lagrangian method indicate that this code can provide results with good accuracy over a wide range of gun geometry and loading conditions.
Resumo:
A time averaged two-dimensional fluid model including an electromagnetic module with self-consistent power deposition was developed to simulate the transport of a low pressure radio frequency inductively coupled plasma source. Comparsions with experiment and previous simulation results show, that the fluid model is feasible in a certain range of gas pressure. In addition, the effects of gas pressure and power input have been discussed.
Resumo:
A coupled map lattices with convective nonlinearity or, for short, Convective Coupled Map (CCM) is proposed in this paper to simulate spatiotemporal chaos in fluid hows. It is found that the parameter region of spatiotemporal chaos can be determined by the maximal Liapunov exponent of its complexity time series. This simple model implies a similar physical mechanism for turbulence such that the route to spatiotemporal chaos in fluid hows can be envisaged.
Resumo:
The g-jitter influence on thermocapillary convection and critical Marangoni number in a liquid bridge of half-floating rone was discussed in the low frequency range of 0.4 to 1.5 Hz in a previous paper. This paper extended the experiments to the intermediate frequency range of 2 to 18 Hz, which htrs often been recorded as vibration environment of spacecrafts. The experiment was completed on the deck of a vibration machine, which gave a periodical applied acceleration to simulate the effects of g-jitter. The experimental results in the intermediate frequency range are different from that in the low frequency range. The velocity field and the shape of the free surface have periodical fluctuations in response to g-jitter. The amplitude of the periodical varying part of the temperature response decreases obviously with increasing frequency of g-jitter and vanishes almost when the frequency of g-jitter is high enough. The critical Marangoni number is defined to describe the transition from a periodical convection in response to g-jitter to an oscillatory convection due to internal instability, and will increase with increasing g-jitter frequency. According to the spectral analysis, it can be found that the oscillatory part of temperature is a superposition of two harmonic waves if the Marangoni number is larger than a critical value.
Resumo:
In order to develop the ultra-large scale integration(ULSI), low pressure and high density plasma apparatus are required for etching and deposit of thin films. To understand critical parameters such as the pressure, temperature, electrostatic potential and energy distribution of ions impacting on the wafer, it is necessary to understand how these parameters are influenced by the power input and neutral gas pressure. In the present work, a 2-D hybrid electron fluid-particle ion model has been developed to simulate one of the high density plasma sources-an Electron Cyclotron Resonance (ECR) plasma system with various pressures and power inputs in a non-uniform magnetic field. By means of numerical simulation, the energy distributions of argon ion impacting on the wafer are obtained and the plasma density, electron temperature and plasma electrostatic potential are plotted in 3-D. It is concluded that the plasma density depends mainly on both the power input and neutral gas pressure. However, the plasma potential and electron temperature can hardly be affected by the power input, they seem to be primarily dependent on the neutral gas pressure. The comparison shows that the simulation results are qualitatively in good agreement with the experiment measurements.
Resumo:
A half floating zone is fixed on a vibrational deck, which supports a periodical applied acceleration to simulate the effect of g-jitter. This paper deals with the effects of g-jitter on the fluid fields and the critical Marangoni number, which describes the transition from a forced oscillation of thermocapillary convection into an instability oscillatory convection in a liquid bridge of half floating zone with top rod heated. The responses of g-jitter field on the temperature profiles and flow pattern in the liquid bridge were obtained experimentally. The results indicated that the critical Marangoni number decreases with the increasing of g-jitter effect and is slightly smaller for higher frequency of g-jitter with fixed strength of applied gravity.