82 resultados para Silicone gels
Resumo:
New methylene blue-intercalated a-zirconium phosphate (NMBZrP) was synthesized in the presence of n-butylamine and characterized by powder XRD, FTIR, TEM and elemental analysis. Sub-micron particles of NMBZrP in deionized water were apt to deposit onto the surface of graphite powder to yield graphite powder-supported NMBZrP, which was subsequently dispersed into methyltrimethoxysilane-derived gels to fabricate surface-renewable, stable, rigid carbon ceramic electrodes containing new methylene blue. Cyclic voltammetric studies revealed that peak currents of the NMBZrP-modified electrode were surface-confined at low scan rates but diffusion-controlled. at high scan rates. In addition, NMBZrP immobilized in a carbon ceramic matrix presented a two-electron, three-proton redox process in acidic aqueous solution in the pH range from 0.52 to 3.95.
Resumo:
A surface-renewable tris (1,10-phenanthroline-5, 6-dione) iron (II) hexafluorophosphate (FePD) modified carbon ceramic electrode was constructed by dispersing FePD and graphite powder in methyltrimethoxysilane (MTMOS) based gels. The FePD-modified electrode presented pH dependent voltammetric behavior, and its peak currents were diffusion-controlled in 0.1 mol/L Na2SO4 + H2SO4 solution (pH = 0. 4). In the, presence of iodate, clear electrocatalytic reduction waves were observed and thus the chemically modified electrode was used as an amperometric sensor for iodate in common salt. The linear range, sensitivity, detection limit and response time of the iodate sensor were 5 x 10(-6)-1 x 10(-2) mol/L, 7.448 muA.L/mmol, 1.2 x 10(-6) mol/L and 5 s, respectively. A distinct advantage of this sensor is its good reproducibility of surface-renewal by simple mechanical polishing.
Resumo:
Prussian blue (PB) supported on graphite powder was prepared by the chemical deposition technique and subsequently dispersed into methyltrimethoxysilane-derived gels to yield a conductive graphite organosilicate composite. The composite was used as the electrode material to fabricate a three-dimensional PB-modified electrode. PB acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone, and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. The chemically modified electrode can electrocatalyze the oxidation of hydrazine, and exhibits a distinct advantage of polishing in the event of surface fouling, as well as simple preparation, good chemical and mechanical stability and good repeatability of surface-renewal. Hydrodynamic voltammetric experiments were performed to characterize the electrode as an amperometric sensor for the determination of hydrazine. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Indium(III) hexacyanoferrate(II/III) (InHCF) supported on graphite powder was prepared using the in situ chemical deposition procedure and subsequently dispersed into methyltrimethoxysilane-derived gels to yield a conductive graphite organosilicate composite. The composite was used as the electrode material to fabricate a three-dimensional InHCF-modified electrode. InHCF acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. The chemically modified electrode can electrocatalyze the oxidation of thiosulfate, and exhibits a good repeatability of surface-renewal by simple mechanical polishing, as well as simple preparation, good chemical and mechanical stability.
Resumo:
Terbium complexes with benzoic acid and its derivatives o-hydroxybenzoic acid and p-hydroxybenzoic acid were in situ synthesized in sol-gel derived silica matrix via a two-step sol-gel process. The formation process of the complex was characterized by fluorescence spectra, absorption spectra and IR spectra. The gels that contain in situ synthesized complexes exhibit the characteristic emission bands of terbium ion. The fluorescence lifetimes of Tb3+ in the silica gels are longer than those in the pure complexes and in the solutions that contain the corresponding complexes. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
9,10-Phenanthrenequinone (PQ) supported on graphite powder by adsorption was dispersed in propyltrimethoxysilane-derived gels to yield a conductive composite which was used as electrode material to fabricate a PQ-modified carbon ceramic electrode. In this configuration, PQ acts as a catalyst, graphite powder guarantees conductivity by percolation, the silicate provides a rigid porous backbone, and the propyl groups endow hydrophobicity and thus limit the wetting region of the modified electrode. Square-wave voltammetry was exploited to investigate the pH-dependent electrochemical behavior of the composite electrode and an almost Nernstian response was obtained from pH 0.42 to 6.84. Because the chemically modified electrode can electrocatalyze the reduction of iodate in acidic aqueous solution (pH 2.45), it was used as an amperometric sensor for the determination of iodate in table salt. The advantages of the electrode are that it can be polished in the event of surface fouling, it is simple to prepare, has excellent chemical and mechanical stability, and the reproducibility of surface-renewal is good.
Resumo:
Manganous hexacyanoferrate (MnHCF) supported on graphite powder was dispersed into methyltrimethoxysilane-derived gels to yield a conductive composite, which was used as electrode material to construct a renewable three-dimensional MnHCF-modifed electrode. MnHCF acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone, and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. Cyclic voltammetry was exploited to investigate the dependence of electrochemical behavior on supporting electrolytes containing various cations. The chemically modified electrode can electrocatalytically oxidize L-cysteine, and exhibits a distinct advantage of polishing in the event of surface fouling, as well as simple preparation, good chemical and mechanical stability, and good repeatability of surface renewal.
Resumo:
A novel inorganic-organic hybrid material incorporating graphite powder and Keggin-type alpha -germanomolybdic acid (GeMo12) in methyltrimethoxysilane-based gels has been produced by the sol-gel technique and used to fabricate a chemically bulk-modified electrode. GeMo12 acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone, and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. The GeMo12-modified graphite organosilicate composite electrode was characterized by cyclic and square-wave voltammetry. The modified electrode shows a high electrocatalytic activity toward the reduction of bromate, nitrite and hydrogen peroxide in acidic aqueous solution. In addition, the chemically-modified electrode has some distinct advantages over the traditional polyoxometalate-modified electrodes, such as long-term stability and especially repeatability of surface-renewal by simple mechanical polishing.
Resumo:
Cobalt(II) hexacyanoferrate (CoHCF) was deposited on graphite powder by an in situ chemical deposition procedure and then dispersed into methyltrimethoxysilane-derived gels to prepare a surface-renewable CoHCF-modified electrode. The electrochemical behavior of the modified electrode in different supporting electrolyte solutions was characterized by cyclic voltammetry. In addition, square-wave voltammetry was employed to investigate the pNa-dependent electrochemical behavior of the electrode. The CoHCF-modified electrode showed a high electrocatalytic activity toward thiosulfate oxidation and could thus be used as an amperometric thiosulfate sensor.
Resumo:
Graphite powder-supported nickel(II) hexacyanoferrate (NiHCF) was prepared by the in situ chemical deposition method and then dispersed into methyltrimethoxysilane-derived gels to form a conductive composite. The composite was used as electrode material to construct a surface-renewable three-dimensional NiHCF-modified carbon ceramic electrode. Electrochemical behavior of the chemically modified electrode was well characterized using cyclic and square-wave voltammetry. The electrode presented a good electrocatalytic activity toward the oxidization of thiosulfate and thus was used as an amperometric sensor for thiosulfate in the photographic waste effluent. In addition, the electrode exhibited a distinct advantage of surface-renewal by simple mechanical polishing, as well as simple preparation, good chemical and mechanical stability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Ternary europium complexes with thenoyltrifluoroacetone (TTA) and phenanthroline (phen) were incorporated into SiO2/polymer matrix by a sol-gel method. The gels exhibit the characteristic emission bands of europium ion. In addition, Eu3+ presents a longer fluorescence lifetime in gel than in the corresponding pure complex powder. Concentration effects on the luminescence intensity were investigated. The reasons that are responsible for above results are also discussed in the context.
Resumo:
The effect of accelerated weather aging an ethylene-propylene-diene monomer(EPDM) rubber used for outdoor insulation was studied by surface roughness measurement and X-ray photoelectron spectroscopy(xps). The surface roughness of EPDM rubber changed with aging time. The surface oxygen and aluminum content were found to increase and that of carbon, silicon and nitrogen to decrease with time. The detailed XPS analysis indicated that the concentration of carbon in C-C decreased and that of highly oxidized carbons in C-O, C=O and O=C-O increased with time, which was due to the oxidation of EPDM rubber polymer. The appearance of O=C-O on the surface of EPDM rubber was a signal that EPDM rubber became aged. The aging speed decreased with time. The aging mechanism is discussed also.
Resumo:
In-situ synthesis of europium and terbium complexes with 1,10-phenanthroline (phen) in silica matrix by a two-step sol-gel process has been proposed. The formation of europium and terbium complexes with phen in sol-gel derived silica gel were confirmed by the luminescence excitation spectra. The silica gels that contain in-situ synthesized europium and terbium complex exhibit the characteristic emission bands of the rare earth ions. Furthermore. the rare earth ions present longer fluorescence lifetimes than the comparable pure complex powder and the complexes dissolved in ethanol solutions. The luminescence properties of the silica gels codoped with europium (or terbium) and phen were also investigated with respect to the gels doped with europium (or terbium). (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A process for in situ synthesis of terbium complex with salicylic acid by a two-step sol-gel method in silica matrix has been proposed. The luminescence properties of the silica gels codoped with terbium and salicylic acid have also been discussed with respect to that of the gel doped with terbium and that of pure terbium complex with salicylic acid.
Resumo:
Ternary complexes of europium and terbium with paraaminobenzoic acid and 1,10-phenanthroline (Eu(p-ABA)(3). phen . 2H(2)O and Tb(p-ABA)(3). phen . 2H(2)O, where p-HABA = paraaminobenzoic acid and phen = 1,10-phenanthroline) were introduced into a silica matrix by sol-gel method. The luminescence behavior of the complexes in silica gels was studied in comparison with the. corresponding solid-state complexes by means of emission, excitation spectra, and Lifetimes. Within the range of effective dopant concentrations, the luminescence intensities of rare-earth complexes in silica gel increase with the increasing of their dopant concentration. The lifetimes of rare-earth ions (Eu3+ and-Tb3+) in silica gel doped with europium and terbium complexes become longer than those in pure complexes. Very small amounts of rare-earth complexes doped in silica gel matrix can exhibit excellent luminescence properties, (C) 1998 Elsevier Science Ltd.