238 resultados para Selective Oxidation
Resumo:
We conducted the liquid phase oxidation of toluene with molecular oxygen over heterogeneous catalysts of copper-based binary metal oxides. Among the copper-based binary metal oxides, iron-copper binary oxide (Fe/Cu = 0.3 atomic ratio) was found to be the best catalyst. In the presence of pyridine, overoxidation of benzaldehyde to benzoic acid was partially prevented. As a result, highly selective formation of benzaldehyde (86% selectivity) was observed after 2 h of reaction (7% conversion of toluene) at 463 K and 1.0 MPa of oxygen atmosphere in the presence of pyridine. These catalytic performances were similar or better than those in the gas phase oxidation of toluene at reaction temperatures higher than 473 K and under 0.5-2.5 MPa. It was suggested from competitive adsorption measurements that pyridine could reduce the adsorption of benzaldehyde. At a long reaction time of 4 It, the conversion increased to 25% and benzoic acid became the predominant reaction product (72% selectivity) in the absence of pyridine. The yield of benzoic acid was higher than that in the Snia-Viscosa process, which requires corrosive halogen ions and acidic solvents in the homogeneous reaction media. The catalyst was easily recycled by simple filtration and reusable after washing and drying.
Resumo:
Pd-supported on WO3-ZrO2 (W/Zr atomic ratio=0.2) calcined at 1073 K was found to be highly active and selective for gas-phase oxidation of ethylene to acetic acid in the presence of water at 423 K and 0.6 MPa. Contact time dependence demonstrated that acetic acid is formed via acetaldehyde formed by a Wacker-type reaction, not through ethanol by hydration of ethylene.
Resumo:
Composite coatings were obtained on A3 steel by hot dipping aluminum(HDA) at 720 ℃ for 6 min and micro-plasma oxidation(MPO) in alkali electrolyte. The surface morphology, element distribution and interface structure of composite coatings were studied by means of XRD, SEM and EDS. The results show that the composite coatings obtained through HDA/MPO on A3 steel consist of four layers. From the surface to the substrate, the layer is loose Al2O3 ceramic, compact Al2O3 ceramic, Al and FeAl intermetallic compound layer in turn. The adhesions among all the layers are strengthened because the ceramic layer formed at the Al surface originally, FeAl intermetallic compound layer and substrate are combined in metallurgical form through mutual diffusion during HDA process.Initial experiment results disclose that the anti-corrosion performance and wear resistance of composite coating are obviously improved through HDA/MPO treatment.
Resumo:
The voltage-current properties during plasma electrolytic discharge were determined by measuring the current density and cell voltage as functions of processing time and then by mathematical transformation. Correlation between discharge I-V property and the coatings microstructure on aluminum alloy during plasma electrolfic oxidation was determined by comparing the voltage-current properties at different process stages with SEM results of the corresponding coatings. The results show that the uniform passive film corresponds to a I-V property with one critical voltage, and a compound of porous layer and shred ceramic particles corresponds to a I-Vproperty with two critical voltages. The growth regularity of PEO cermet coatings was also studied.
Resumo:
Amorphous [Al-Si-O] coatings were deposited on aluminum alloy by plasma electrolytic oxidation (PEO). The process parameters, composition, micrograph, and mechanical property of PEO amorphous coatings were investigated. It is found that the growth rate of PEO coatings reaches 4.44 mu m/min if the current density is 0.9 mA/mm(2). XRD results show that the PEO coatings are amorphous in the current density range of 0.3-0.9 mA/mm(2). EDS results show that the coatings are composed of O, Si and At elements. SEM results show that the coatings are porous. Nano indentation results show that the hardness of the coatings is about 3 - 4 times of that of the substrate, while the elastic modulus is about the same with the substrate. Furthermore, a formation mechanism of amorphous PEO coatings was proposed.
Resumo:
The effect of diffuse treatment on coating microstructure and oxidation resistance at high-temperature of hot-dip aluminum were studied by means of TEM, SEM and XRD. The results show that, the diffusion temperature has significant effect on structure of coatings and its oxidation resistance. After diffusion at 750 degreesC, the coating consists of thick outer surface layer (Fe2Al5+ FeAl2), thin internal layer (FeAl + stripe FeAl2), and its oxidation resistance is poor. After diffusion at 950 degreesC, the outer surface layer is composed of single FeAl2 phase, the internal layer is composed of FeAl phase, and its oxidation resistance declines due to the occurrence of early stage internal oxidation cracks in the coating. After diffusion at 850 degreesC, the outer surface layer becomes thinner and consists of FeAl2 Fe2Al5(small amount), the internal layer becomes thicker and consists of FeAl+spherical FeAl2, and the spheroidized FeAl2 phase in the internal layer and its existing in FeAl phase steadily improve the oxidation resistance of the coating.
Resumo:
Ceramic coatings were formed by plasma electrolytic oxidation (PEO) on aluminized steel. Characteristics of the average anodic voltages versus treatment time were observed during the PEO process. The micrographs, compositions and mechanical properties of ceramic coatings were investigated. The results show that the anodic voltage profile for processing of aluminized steel is similar to that for processing bulk Al alloy during early PEO stages and that the thickness of ceramic coating increases approximately linearly with the Al layer consumption. Once the Al layer is completely transformed, the FeAl intermetallic layer begins to participate in the PEO process. At this point, the anodic voltage of aluminized steel descends, and the thickness of ceramic coating grows more slowly. At the same time, some micro-cracks are observed at the Al2O3/FeAl interface. The final ceramic coating mainly consists of gamma-Al2O3, mullite, and alpha-Al2O3 phases. PEO ceramic coatings have excellent elastic recovery and high load supporting performance. Nanohardness of ceramic coating reaches about 19.6 GPa. (c) 2007 Elsevier B. V. All rights reserved.
Resumo:
There are very strong interests in improving the high-temperature wear resistance of the y-TiAl intermetallic alloy, especially when applied as tribological moving components. In this paper, microstructure, high-temperature dry sliding wear at 600 degrees C and isothermal oxidation at 1000 degrees C on ambient air of laser clad gamma/W2C/TiC composite coatings with different constitution of Ni-Cr-W-C precursor mixed powders on TiAl alloy substrates have been investigated. The results show that microstructure of the laser fabricated composite coatings possess non-equilibrium microstructure consisting of the matrix of nickel-base solid solution gamma-NiCrAl and reinforcements of TiC, W2C and M23C6 carbides. Higher wear resistance than the original TiAl alloy is achieved in the composite coatings under high-temperature wear test conditions. However, the oxidation resistance of the laser clad gamma/W2C/TiC composite coatings is deceased. The corresponding mechanisms resulting in the above behaviors of the laser clad composite coatings are discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
It is proposed in this paper that we can use frequency-modulated (FM) lasers to realize bond-selective chemical reactions or to raise the efficiency of molecular isotope separation. Examples are given for HF molecule and the C–H bond in some hydrocarbons.
Resumo:
Composite coatings were obtained on A3 steel by hot dipping aluminum(HAD) at 720 degreesC for 6 min and micro-plasma oxidation (MPO) in alkali electrolyte. The surface morphology, element distribution and interface structure of composite coatings were studied by means of XRD, SEM and EDS. The results show that the composite coatings obtained through HAD/MPO on A3 steel consist of four layers. From the surface to the substrate, the layer is loose Al2O3 ceramic, compact Al2O3 ceramic, At and FeAl intermetallic compound layer in turn. The adhesions among all the layers are strengthened because the ceramic layer formed at the At surface originally, FeAl intermetallic compound layer and substrate are combined in metallurgical form through mutual diffusion during HAD process. Initial experiment results disclose that the anti-corrosion performance and wear resistance of composite coating are obviously improved through HAD/MPO treatment.
Resumo:
We investigate the mechanism of selective metallization on glass surfaces with the assistance of femtosecond laser irradiation followed by electroless plating. Irradiation of femtosecond laser makes it possible to selectively deposit copper microstructures in the irradiated area on glass surfaces coated with silver nitrate films. The energy-dispersive X-ray (EDX) analyses reveal that silver atoms are produced on the surface of grooves formed by laser ablation, which serve as catalysis seeds for subsequent electroless copper plating. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate that a Raman sensor integrated with a micro-heater, a microfluidic chamber, and a surface-enhanced Raman scattering (SERS) substrate can be fabricated in a glass chip by femtosecond laser micromachining. The micro-heater and the SERS substrate are fabricated by selective metallization on the glass surface using a femtosecond laser oscillator, whereas the microfluidic chamber embedded in the glass sample is fabricated by femtosecond laser ablation using a femtosecond laser amplifier. We believed that this new strategy for fabricating multifunctional integrated microchips has great potential application for lab-on-a-chips. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We report selective metallization on surfaces of insulators ( glass slides and lithium niobate crystal) based on femtosecond laser modification combined with electroless plating. The process is mainly composed of four steps: (1) formation of silver nitrate thin films on the surfaces of glass or crystal substrates; (2) generation of silver particles in the irradiated area by femtosecond laser direct writing; (3) removal of unirradiated silver nitrate films; and (4) selective electroless plating in the modified area. We discuss the mechanism of selective metallization on the insulators. Moreover, we investigate the electrical and adhesive properties of the copper microstructures patterned on the insulator surfaces, showing great potential of integrating electrical functions into lab-on-a-chip devices. (C) 2007 Optical Society of America.
Resumo:
We describe a method to generate an ultra-slow atomic beam by velocity selective resonance (VSR). A VSR experiment on a metastable helium beam in a magnetic field is presented and the results show that the transverse velocity of the defected beam can be cooled and precisely controlled to less than the recoil velocity, depending on the magnitude of the magnetic field. We extend this idea to a cold atomic cloud to produce an ultra-slow Rb-87 beam that can be used as a source of an atomic fountain clock or a space clock.
Resumo:
We report on space-selective co-precipitation of silver and gold nanoparticles in Ag+, Au3+ co-doped silicate glasses by irradiation of femtosecond laser pulses and subsequent annealing at high temperatures. The color of the irradiated area in the glass sample changed from yellow to red with the increase of the annealing temperature. The effects of average laser power and annealing temperature on precipitation of the nanoparticles were investigated. A reasonable mechanism was proposed to explain the observed phenomena. (c) 2006 Elsevier Ltd. All rights reserved.