136 resultados para Seasonal matching
Resumo:
LFC is a functional language based on recursive functions defined in context-free languages. In this paper, a new pattern matching algorithm for LFC is presented, which can represent a sequence of patterns as an integer by an encoding method. It is a rather simple method and produces efficient case-expressions for pattern matching definitions of LFC. The algorithm can also be used for other functional languages, but for nested patterns it may become complicated and further studies are needed.
Resumo:
A new algorithm for compiling pattern matching is presented. Different from the traditional traversal-based approaches, it can represent a sequence of patterns as an integer by an encoding method and translate equations into case-expressions. The algorithm is simple to implement, and efficient for a kind of patterns, i.e. simple and dense patterns. This method can be complementary to traditional approaches.
Resumo:
An important characteristic of virtual assembly is interaction. Traditional di-rect manipulation in virtual assembly relies on dynamic collision detection, which is very time-consuming and even impossible in desktop virtual assembly environment. Feature-matching isa critical process in harmonious virtual assembly, and is the premise of assembly constraint sens-ing. This paper puts forward an active object-based feature-matching perception mechanism and afeature-matching interactive computing process, both of which make the direct manipulation in vir-tual assembly break away from collision detection. They also help to enhance virtual environmentunderstandability of user intention and promote interaction performance. Experimental resultsshow that this perception mechanism can ensure that users achieve real-time direct manipulationin desktop virtual environment.
Resumo:
Ultra-broadband optical parametric chirped-pulse amplification is analyzed based the compensation of phase-mismatch, which is achieved by matching of both group-velocity and pulse-front between signal and idler by the combination of the noncollinear-phase-match and pulse-front-tilt. The results show exactly matching of both group-velocity and pulse-front is the important criterion for constructing an UBOPCPA. Its general model is developed, in which the group velocities, noncollinear angles. spatial walk-off angles, linear angular spectral dispersion coefficients and pulse-front tilted angles are suitably linked to each other. Finally, specific numerical calculations and simulations are presented for beta-barium borate OPCPA with type-1 noncollinear angularly dispersed geometry. (C) 2005 Elsevier B.V. All rights reserved.