366 resultados para SPONTANEOUS EMISSION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 2 at.% Sm:GdVO4 crystal was grown by the Czochralski method. The segregation coefficient of Sm3+ ion in this crystal is 0.98. The crystal structure of the Sm:GdVO4 crystal was determined by X-ray diffraction analysis. Judd-Ofelt theory was used to calculate the intensity parameters (Omega(i)), the spontaneous emission probability, the luminary branching ratio and the radiative lifetime of the state (4)G(5/2). The stimulated emission cross-sections at 567, 604 and 646 nm are calculated to be 5.92 x 10(-21), 7.62 x 10(-21) and 5.88 x 10(-21) cm(2), respectively. The emission cross-section at 604 nm is 4.4 times lager than that in Sm: YAP at 607 nm. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have fabricated and characterized GaN-based vertical cavity surface emitting lasers (VCSELs) with a unique active region structure, in which three sets of InGaN asymmetric coupled quantum wells are placed in a half-wavelength (0.5 lambda) length. Lasing action was achieved under optical pumping at room temperature with a threshold pumping energy density of about 6.5 mJ/cm(2). The laser emitted a blue light at 449.5 nm with a narrow linewidth below 0.1 nm and had a high spontaneous emission factor of about 3.0x10(-2). The results indicate that this active region structure is useful in reducing the process difficulties and improving the threshold characteristics of GaN-based VCSELs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel microcavity semiconductor optical amplifier ( MCSOA) was proposed by incorporating top and bottom distributed Bragg reflectors ( DBRs) into the waveguide structure of conventional traveling-wave semiconductor optical amplifiers(TW-SOAs). The incoming( outgoing) light beam incidented onto (escaped from) the waveguide structure at a oblique angle through two optical windows, where the top DBR was etched away, and anti-reflection coating was deposited. The light beams inside the optical cavity were reflected repeatedly between two DBRs and propagated along waveguide in a zigzag optical path. The performance of the MCSOA was systematically investigated by extensive numerical simulation based on a traveling-wave model by taking into account the comprehensive effects of DBRs on both the amplification of signals and the filtering of spontaneous emission( SE). Our results show that the MCSOA is capable of achieving a fiber-to-fiber gain as high as 40dB and a low noise figure is less than 3.5dB.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tensile-strained GaAsP/GaInP single quantum well (QW) laser diode (I-D) structures have been grown by low-pressure metal organic chemical vapor deposition (LP-MOCVD) and related photoluminescence (PL) properties have been investigated in detail. The samples have the same well thickness of 16 nm but different P compositions in a GaAsP QW. Two peaks in room temperature (RT) PL spectra are observed for samples with a composition larger than 0.10. Temperature and excitation-power-dependent PL spectra have been measured for a sample with it P composition of 0.15. It is found that the two peaks have a 35 meV energy separation independent of temperature and only the low-energy peak exists below 85 K. Additionally, both peak intensities exhibit a monotonous increase as excitation power increases. Analyses indicate that the two peaks arise from the intrinsic-exciton recombination mechanisms of electron-heavy hole (e-hh) and electron-light hole (e-hh). A theoretical calculation based oil model-solid theory, taking, into account the spin-orbit splitting energy, shows good agreement with our experimental results. The temperature dependence of PL intensity ratio is well explained using the spontaneous emission theory for e-hh and e-hh transitions. front which the ratio can be characterized mainly by the energy separation between the fill and Ill states.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The gain saturation behaviors and noise figure are numerically analyzed for quantum-dot semiconductor optical amplifiers (QD-SOAs). The carrier and photon distributions in the longitudinal direction as well as the photon energy dependent facet reflectivity are accounted in the rate equations, which are solved with output amplified spontaneous emission spectrum as iterative variables. The longitudinal distributions of the occupation probabilities and spectral-hole burning are presented for electrons in the excited and ground states of quantum dots. The saturation output power 19.7 dBm and device gain 20.6 dB are obtained for a QD-SOA with the cavity length of 6 rum at the bias current of 500 mA. The influences of them electron intradot relaxation time and the QD capture time on the gain spectrum are simulated with the relaxation time of 1, 30, and 60 ps and capture time of 1, 5, and 10 ps. The noise figure as low as 3.5 dB is expected due to the strong polarization sensitive spontaneous emission. The characteristics of gain saturation and noise figure versus input signal power for QD-SOAs are similar to that of semiconductor. linear optical amplifiers with gain clamping by vertical laser fields.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamics of spontaneous emission from GaAs slabs with photonic crystals etched into them are investigated both theoretically and experimentally. It is found that the intensity of spontaneous emission decreases significantly and that photonic crystals significantly shorten the lifetime of emission. The mechanics of enhancement and the reduction of emission from photonic crystals are analyzed by considering the surface recombination of GaAs. The measured and calculated lifetimes agree at a surface recombination velocity of 1.88x10(5) cm/s.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel Y-branch based monolithic transceiver with a superluminescent diode and a waveguide photodiode (Y-SDL-PD) is designed and fabricated by the method of bundle integrated waveguide (BIG) as the scheme for monolithic integration and angled Y-branch as the passive bi-directional waveguide. The simulations of BIG and Y-branches show low losses and improved far-field patterns, based on the beam propagation method (BPM). The amplified spontaneous emission of the device is up to 10mW at 120mA with no threshold and saturation. Spectral characteristics of about 30 nm width and less than 1 dB modulation are achieved using the built-in anti-lasing ability of Y-branch. The beam divergence angles in horizontal and vertical directions are optimized to as small as 12 degrees x 8 degrees, resulting in good fibre coupling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spontaneous emission from GaAs/AlGaAs quantum dots (QDs) embedded in photonic crystals with a narrow photonic band gap is studied theoretically. The results show that the decay lifetime is very sensitive to the sizes of QDs, and both inhibited and accelerated emission can occur, which had been indicated in a previous experiment. The Weisskopf-Wigner approximation, good for atoms and molecules, may be incorrect for QDs. A damped Rabi oscillation of the excited state with the transition frequency outside the photonic band gap may appear, which is impossible for atoms and molecules. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The antibunching properties of the fluorescence from a two-level ideal system in a 12-fold quasiperiodic photonic crystal are investigated based on the calculated local density of states. We found that the antibunching phenomenon of the fluorescence from two-level ideal systems could be significantly changed by varying their positions, i.e., perfect antibunching and antibunching with damped Rabi oscillation phenomenon occurred in different positions and at different frequencies in photonic crystals as a result of the large differences in the local density of states. This study revealed that the multi-level coherence of fluorescence from a two-level ideal system could be manipulated by controlling the position of the two-level ideal system in photonic crystals and the emission frequency in the photonic band structure. Copyright (C) EPLA, 2008

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A detailed model for semiconductor linear optical amplifiers (LOAs) with gain clamping by a vertical laser field is presented, which accounts the carrier and photon density distribution in the longitudinal direction as well as the facet reflectivity. The photon iterative method is used in the simulation with output amplified spontaneous emission spectrum in the wide band as iterative variables. The gain saturation behaviors and the noise figure are numerically simulated, and the variation of longitudinal carrier density with the input power is presented which is associated with the ON-OFF state of the vertical lasers. The results show that the LOA can have a gain spectrum clamped in a wide wavelength range and have almost the same value of noise figure as that of conventional semiconductor optical amplifiers (SOAs). Numerical results also show that an LOA can have a noise figure about 2 dB less than that of the SOA gain clamped by a distributed Bragg reflector laser.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the fabrication and the measurement of microcavities whose optical eigenmodes were discrete and were well predicted by using the model of the photonic dot with perfectly reflected sidewalls. These microcavities were consisted of the semiconductor pillar fabricated by the simple wet-etched process and successive metal coating. Angle-resolved photoluminescence spectra demonstrate the characteristic emission of the corresponding eigenmodes, as its pattern revealed by varying both polar (0) and azimuthal (45) angles. It is shown that the metal-coated sidewalls can provide an efficient way to suppress the emission due to the leaking modes in these pillar microcavities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photon iterative numerical technique, which chooses the outputs of the amplified spontaneous emission spectrum and lasing mode as iteration variables to solve the rate equations, is proposed and applied to analyse the steady behaviour of conventional semiconductor optical amplifiers (SOAs) and gain-clamped semiconductor optical amplifiers (GCSOAs). Numerical results show that the photon iterative method is a much faster and more efficient algorithm than the conventional approach, which chooses the carrier density distribution of the SOAs as the iterative variable. It is also found that the photon iterative method has almost the same computing efficiency for conventional SOAs and GCSOAs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Broad-band semiconductor optical amplifiers (SOAs) with different thicknesses and thin bulk tensile-strained active layers were fabricated and studied. Amplified spontaneous emission (ASE) spectra and gain spectra of SOAs were measured and analyzed at different CW biases. A maximal 3 dB ASE bandwidth of 136 nm ranging from 1480 to 1616 nm, and a 3 dB optical amplifier gain bandwidth of about 90 nm ranging from 1510 to 1600 nm, were obtained for the very thin bulk active SOA. Other SOAs characteristics such as saturation output power and polarization sensitivity were measured and compared. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quantum dissipation and broadening mechanisms in Si-doped InGaN quantum dots are studied via the photoluminescence technique. It is found that the dissipative thermal bath that embeds the quantum dots plays an important role in the photon emission processes. Observed spontaneous emission spectra are modeled with the multimode Brownian oscillator model achieving an excellent agreement between experiment and theory for a wide temperature range. The dimensionless Huang-Rhys factor characterizing the strength of electron-LO-phonon coupling and damping constant accounting for the LO-phonon-bath interaction strength are found to be similar to 0.2 and 200 cm(-1), respectively, for the InGaN QDs. (c) 2006 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using non-identical quantum wells as the active material, a new distributed-feed back laser is fabricated with period varied Bragg grating. The full width at half maximum of 115 nm is observed in the amplified spontaneous emission spectrum of this material, which is flatter and wider than that of the identical quantum wells. Two wavelengths of 1.51 mu m and 1.53 mu m are realized under different work conditions. The side-mode suppression ratios of both wavelengths reach 40 dB. This device can be used as the light source of coarse wavelength division multiplexer communication systems.