67 resultados para SFC
Resumo:
HIRFL is a tandem cyclotron complex for heavy ion. On the beam line between SFC and SSC, there is a stripper. Behind it, the distribution of charge states of beam is a Gauss distribution. The equilibrium charge state Q_0 is selected by 1BO2(a 50° dipole behind the stripper) and delivered to SSC. One of two new small beam line (named SLAS) after 1B02 will be builded in or der to split and deliver the unused ions of charge states (Q_0 ± n) to aspecific experimental area. Q_0 ± n ions are septumed and separated from initial(Q_0) ion beam by two septum magnets SM1, SM2. The charge state selected by SM1 will be Q_0 ± 1(6 ≤ Q_0 < 17), Q_0 ± 2(17 ≤ Q_0 < 33) and Q_0 ± 3 (Q_0 ≥ 33) forming a beam in one of the two possine new beam line with the stripping energy of (0.2 to 9.83 Mev/A), an emittance of 10π mm.mrad in the two transverse planes and an intensity ranging from 10~(11) pps for z ≤ 10 to some 10~5 pps for the heaviest element. Behind SM2, a few transport elements (three dipoles and seven qudrupoles) tra nsport Q_0 ± n beam to target positions T1, T2 (see fig. 1) and generate small beam spots (φ ≤ 4mm, φ ≤ 6mm). The optics design of the beam line has been done based on SLAC-75 (a first and second - order matrix theory). beam optics calculation has been worked out with the TRANSPORT program. The design is a very economical thinking, because without building a new accelerator we can obtain a lower energy heavy ion beam to provide for a lot of atomic and solid state physical experiments
Resumo:
ECR离子源中产生的束流经守输送线注入SFC的中心区。静电偏转器的作用是将轴向注入的束流偏转90°后进入加速器的中心平面。偏转器作为注入元件对束流的中和光学性质影响极大。由于束流在偏转器中同时受到电场和磁场的作用,其运动轨迹比较复杂。使得偏转器的电极面的形状复杂化,给机械加工带动来了困难,本论文就螺旋型静电偏转器的物理性质、轨迹计算,以及加工方法进行了探讨。值得一提的是,为了加工偏转器曲面作者改装了一台数控锐床,并配制了相应的驱动程序。 这种方法对于机械加工行业中广泛应用的金属切削机床的数控改造具有实际意义
Resumo:
在等时性回旋加速器中,束流中心相位的稳定可靠的测量对于优化等时场,监测磁场漂移等有着重要的作用。本文探讨了两个方面的内容:1、对SFC束流中心相位进行了测量,提出并采取了有效的抗干扰措施,得到了比较满意的测量结果。2、编制了用有限方法计算相位探针的感应信号和特性阻抗的应用程序,并对有限元法中系统阵的组装和存储做了有效的改进,使计算方便迅速。给出了计算结果并进行了分析
Resumo:
本文在了解和掌握传统的高频腔体设计方法--传输线理论的基础上,作为该理论的应用,计算了HIRFL注入器SFC高频腔体的主要参数;与实际测量值进行了比较,分析了误差的主要来源。主要的工作是用传输线理论和二维场计算相结合的方法设计了兰州重离子加速器冷却储存环(HIRFL-CSR)的高频腔体,给出了高频系统的主要参数以及所设计腔体加速电场的分布
Resumo:
本论文通过对kb,kr,方法的讨论,纠正了以前的等时场计算方法中存在的1‰的误差.理论和实际情况符合得很好.编制了HIRFL SSC SFC等时场优化程序,以及SSC二维场构造程序,在计算机上进行了SSC模拟优化.优化结果表明,上述程序在理论上可以自洽.
Resumo:
兰州重离子研究装置(Heavy Ion Research Facility at LanZhou,HIRFL)是由一台1.7m扇聚焦回旋加速器(SFC)与一台能量常数K=450的分离扇回旋加速器(SSC)组成的加速器系统。束流相位测量系统式束流诊断系统中的一个重要部分,对等时场优化等具有十分重要的作用。HIRFL束流中心相位测量系统于1985年完成了桌面实验,但由于测量精度低,现场抗干扰能力差,一直未能投入使用。 本课题的目的就是找出原系统存在的问题,逐一解决,以便提高其可靠性与测量精度,达到设计要求。 在通过一系列的电子学部分改进和SSC中心相位探针改造之后,于1995年7月第一次测出了SSC中心束流相位。此后,逐步完善改进电子学硬件部分,同时全新设计了系统控制软件,提高了在SFC和SSC上束流相位的测量精度,终于使该系统达到了测量精度为±2.75°~±1.5°的水平。 本论文第一、二章阐述了束流中心相位测量原理和HIRFL束流中心相位测量系统的工作原理,这是本工作的基础和出发点。 在本论文的第三章中,分析了原系统中存在的主要问题。实践使用中可以看出原系统灵敏度低,抗干扰能力差,可靠性差,测量精度低。为了定量判断系统存在的问题,我们设计了自检系统。利用自检系统我们测出原系统测量精度为±6°,且检测出原系统sin,cos正交输出异常。同时测量了原系统多路开关串话量,大多数道与道之间高于最低要求的-40dB,最差只有-20dB,证明存在严重的道间干扰。 本文的第四章中,针对原系统的可靠性差和精度低的两个问题,采取了硬件与软件两方面的各种措施,对系统加以改进。首先,为了提高系统的可靠性,必须提高系统抗干扰能力。为此,我们进行了两个方面的工作,一是根据我们现有条件自行设计了一种新的电缆电子学长度校正方法,大大减少了电缆间相差(小于0.3°),从而有效地提高了系统的抗干扰能力。这种方法不但可以用来校正相同介质电缆,而且可以用来校正不同介质电缆的电子学长度。二是设计了新的信号预选器,其串话量达到约-70dB,并完善了电磁屏蔽,使其完全达到了设计要求。在改进硬件的同时,为了提高可靠性,重新设计了系统控制软件。新的软件测量数据可靠,漏报概率为10-3,操作简便直观,并易于发展。其次,我们工作的重点是提高测量精度。根据自检结果,我们采取了如下措施: (1) 通过对自检数据进行分析,并与理论分析比较,发现问题主要存在于90°移相电路中。而其后的检测证实了这一点。重新调整90°移相电路,并对90°电缆相移进行了精确的校正,从原81.5°校正为90.6°,从而使系统的精度从±6°提高到±4°。 (2) 通过自检数据和理论分析发现鉴相器存在输出增益不平衡,在解决问题之后使系统测量精度达到了±2.75°~±1.5°。 在本文的第五章中,对加速器运行时的中心束流相位测量结果进行了详细分析。结果证明,测量数据可靠,能正确反映出磁场变化情况,测量重复误差达到了±0.5°,从而说明改进后的中心束流相位测量系统性能良好,达到了设计指标。
Resumo:
本论文比较系统地介绍了等时性回旋加速器的理论,并以兰州重离子加速器系统的注入器SFC和主加速器SSC两台等时性回旋加速器为例介绍该类型加速器的设计特点和设计方法,以及作者在这两台加速器上所做的一些具体设计和改进工作。 首先一般性地介绍加速器尤其是回旋加速器在原子核物理及粒子物理中的作用以及在其它应用学科中的作用,加速器学科尤其是回旋加速器的发展水平和发展趋势。在第二章中给出经典回旋加速器和等时性回旋加速器的理论基础,包括等时性加速原理,轴向聚焦和径向聚焦的稳定加速条件以及由扇块产生的方位角调变磁场提供的轴向聚焦力,径向运动稳定区和共振理论,和加速平衡轨道理论。从第三章到第五章,从等时场的建立,注入系统及引出系统等比较具体的方面来阐述该类型加速器的理论和各种实现方法。第三章介绍GORDON理论和Kb——Kr两种比较常见的理论等时场的建立方法,磁铁和线圈的设计和作用,以及磁场的测量。还介绍了对实际等时性磁场的评价以及通过对束流相位的测量来反映实际等时场的作用和对等时场的再优化等方法。在第四章中,系统地介绍了利用外离子源或利用其它加速器作为注入器时通常采用轴向或者径向注入方法。注入引出系统尤其是注入系统通常是影响一台加速器传输效率的关键性部分,因而在如何提高注入系统的效率方面人们做了大量的工作,特别是轴向注入方法。回旋加速器的中心区是注入的结束和正常加速过程的开始,其设计的好坏对注入效率和后面的束流轨道也是很重要的。第五章在讨论束流从加速器中的引出时,主要强调束流用户或后级加速器对引出束流品质的要求以及引出效率,因而强调了较高的内束流质量和单圈引出的重要性,以及提高引出点的圈距的具体的方法如提高加速圈距、共振进动和非共振进动方法。引出路径上的束流聚焦也是引出系统设计应考虑的一个方面。另外还介绍了再生引出和剥离膜引出方法。在这几章中不仅介绍了回旋加速器的理论,通常从Hamilton方法出发,而且还介绍了进行实际加速器设计中常用的束流轨道数值计算方法。但前者在理解加速器的物理图像方法以及在设计初期对某些重要的参数的评价和估计方面是很必要的。在介绍等时性回旋加速器的理论和设计方法的同时还以SFC和SSC两台回旋加速器和它们的分系统的具体设计为例子作了比较详细的实际应用对照。 论文的最后部分,即第六章是介绍作者自己在回旋加速器的理论和设计方面的部分工作,为了保持整篇论文的协调一致,没有将在国外所做的工作列入,只编入了在HIRFL上进行的直接与回旋加速器的物理设计有关的工作: ① 作者提出的一种新的等时场垫补和优化方法,该方法利用回旋加速器垫补线圈的磁场贡献具有台阶性的特点,对垫补或优化区域采取从小半径到大半径或反过来逐步垫补的方法,它既适用于紧凑式回旋加速器也适用于分离扇回旋加速器,它具有直观性和可对垫补及优化过程进行直接干预的特点。 ② 对SFC的轴向注入系统进行了改进设计,新的注入系统配备两台在线ECR离子源并加强和增加了注入束运线的功能,如增加了离子源的电荷态分析能力,束流发射度的限制功能、进行发射度测量和束流状态的监测功能等等。新的注入系统还提高了三次谐波加速情况下的注入电压以减小空间电荷效应的影响。相比原系统新的轴向注入束运系统有更高的注入效率,更好的调束手段和更好的空间安排。 ③ 对SFC轴向注入束运线的聚束器系统进行了重新设计,用二台分别工作再SFC采用基波加速模式和三次谐波加速模式下的不同聚束器结构代替原来的一台聚束器,以适应SFC较宽的加速粒子和能量范围,并提高了聚束器本身的指标,可以明显地提高轴向注入系统的传输效率和SFC的内束流质量,同时该聚束器系统还采用了新的半频聚束模式,在不影响SFC的效率和束流质量的情况下可以将SFC与SSC的理论纵向匹配效率由原设计的50%提高到100%。 ④ 对SFC加速器的中心区进行了改进设计,配合轴向注入系统将三次谐波加速时的注入半径由2.5cm提高到3.0cm,使加速较重的重离子的条件得到改善,并保留基波加速时2.5cm的注入半径,即新的中心区要适应两套注入参数,每次仅更换新的螺旋线型静电偏转镜。新的中心区还照顾到SFC高频DEE电压在某些情况下偏低的不足。 ⑤ 在对HIRFL加速器系统进行了全面的分析后,提出了一系列的提高其束流指标和运行效率的改进措施,作为进一步工作的方向,并给出了在完成目前正在进行的改进工作后和2000年前后HIRFL可能达到的束流指标。 在附录中一般性地介绍了Hamilton分析力学和带电粒子束的相空间理论,在讨论了束流动力学研究中经常用到的传输矩阵方法和轨迹跟踪方法。在附录二中介绍了加速器用的多电荷态离子源的情况,尤其是以ECR离子源为代表的高电荷重离子源的情况。