71 resultados para SELF-INJURIOUS-BEHAVIOR


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the binding characteristics of double-stranded DNA to self-assembled monolayers (SAMs) containing viologen groups formed on the surface of gold electrodes via Au-S bonds. The positive charged and hydrophobic surfaces of the viologen SAMs modified gold electrodes are suitable to bind strongly dth DNA, whose interactions to solution DNA and adsorbed DNA both lead to positive shifts (22.5 mV and 65 mV, respectively) in the first redox potential ci viologen centers, indicating that the main interaction is from a hydrophobic interaction. Meanwhile, the binding of DNA strongly affects the kinetics of electron transfer of the viologen group so that the separation of anodic and cathodic peak potentials becomes larger and the heterogeneous electron transfer constant becomes smaller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical behavior of the electroactive self-assembled monolayers (SAMs) of thiol-functionalized viologen, CH3(CH2)(9)V2+(CH2)(8)SH, where V2+ is a viologen group, on the gold electrodes is examined by cyclic voltammetry and electrochemical a.c. impedance. A monolayer of viologen is immobilized on the gold electrode surface via the Au-S bond and the normal potentials corresponding to the two successive one-electron transfer processes of the viologen active centers are -310 mV and -652 mV (vs. Ag/AgCl) in 0.1 mol l(-1) phosphate buffer solution (pH 6.96) respectively. These results suggest that the viologen SAMs are stable and well-behaved monolayers. The experimental impedance data corresponding to different forms of viologen group have been fitted to equivalent electrical circuits, and the surface capacitances and resistances have been given. The heterogenous electron transfer rates of the first and the second redox processes are 7.57 s(-1) and 1.49 s(-1) respectively through a.c. impedance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A stable, well-behaved self-assembled monolayer (SAM) of viologen-functionalized thiol was used to immobilize and electrically connect horseradish peroxidase (HRP) at gold electrode. Viologen groups in SAMs facilitated the electron transfer from the electrode to the protein active site so that HRP exhibited a quasi-reversible redox behavior. HRP adsorbed in the SAMs is very stable, and close to a monolayer with the surface coverage of 6.5 x 10(-11) mol/cm(2). The normal potential of HRP is -580 mV vs Ag/AgCl corresponding to ferri/ferro active center and the standard electron transfer rate constant is 3.41 s(-1) in 0.1 M phosphate buffer solution (pH 7.1). This approach shows a great promise for designing enzyme electrodes with other redox proteins and practical use in tailoring a variety of amperometric biosensor devices. Copyright (C) 1997 Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monolayer of cytochrome c oxidase maintaining physiological activity and attached covalently to the self-assembled monolayers of 3-mercaptopropionic acid (MPA) on a gold electrode was obtained. The results of cyclic voltammetry show that direct electron transfer between cytochrome c oxidase and the electrode surface is a fast and diffusionless process. MPA has a dual role as both electrode modifier and the bridging molecule which: keeps cytochrome c oxidase at an appropriate orientation without denaturation and enables direct electron transfer between the protein and the modified electrode. Immobilized cytochrome c oxidase exhibits biphasic phenomena between the concentration of the electrolyte and the normal potentials; meanwhile its electrochemical behavior is also influenced by the buffer components. The quasi-reversible electron transfer process of cytochrome c oxidase with formal potential 385 mV vs. SHE in 5mM phosphate buffer solution (pH 6.4) corresponds to the redox reaction of cyt a(3) in cytochrome c oxidase, and the heterogeneous electron transfer rate constant obtained is 1.56 s(-1). By cyclic voltammetry measurements, it was observed that oxidation and reduction of cytochrome c in solution were catalyzed by the immobilized cytochrome c oxidase. This cytochrome c oxidase/MPA/Au system provides a good mimetic model to study the physiological functions of membrane-associated enzymes and hopefully to build a third-generation biosensor without using a mediator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The voltammetric behavior of the titled compound (denoted as Nd (SiMo7W4)(2)(13-)) in aqueous solution had been studied. An unusual pH response was discussed. The adsorption of the anion on the dropping mercury electrode and a self-inhibition influence of the adsorbed anions on the redox process of those anions dissolved in solution were found. The electrocatalytic effects of the anion on the bromate reduction were investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical behavior of the title compound (denoted Nd(SiMo7W4)(2)(13-)) in aqueous solution has been studied using cyclic voltammetry, sampled d.c. voltammetry, differential pulse voltammetry and bulk electrolysis with coulometry, The stable pH range of Nd(SiMo7W4)(2)(13-) is determined with UV-visible spectra. In the potential range between 0.70 and -0.45 V vs. SCE, the anion in pH 3.8 aqueous solution undergoes one-, one-, two- and two-electron steps of four redox processes attributed to electron addition and removal from the molybdate-oxo framework. The adsorption of the anion on the dropping mercury electrode and a self-inhibition influence of the adsorbed anions on the redox process of those anions dissolved in solution are found. The unusual dependence of the formal potentials on pH is explained with the competition of the protonation and ion-pair formation due to the high negative charge of Nd(SiMo7W4)(2)(13-) and its reduced forms. The electrocatalytic effects of the anion on the bromate are investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The miscibility and phase behavior of polysulfone (PSF) and poly(hydroxyether of bisphenol A) (phenoxy) with a series of copoly(ether ether ketone) (COPEEK), a random copolymer of poly(ether ether ketone) (PEEK), and phenolphthalein poly(ether ether ketone) (PEK-C) was studied using differential scanning calorimetry. A COPEEK copolymer containing 6 mol % ether ether ketone (EEK) repeat units is miscible with PSF, whereas copolymers containing 12 mol % EEK and more are not. COPEEK copolymers containing 6 and 12 mol % EEK are completely miscible with phenoxy, but those containing 24 mol % EEK and more are immiscible with phenoxy. Moreover, a copolymer containing 17 mol % EEK is partially miscible with phenoxy; the blends show two transitions in the midcomposition region and single transitions at either extreme. Two T(g)s were observed for the 50/50 blend of phenoxy with the copolymer containing 17 mol % EEK, whereas a single composition-dependent T-g appeared for all the other compositions. An FTIR study revealed that there exist hydrogen-bonding interactions between phenoxy and the copolymers. The strengths of the hydrogen-bonding interactions in the blends of the COPEEK copolymers containing 6 and 12 mol % EEK are the same as that in the phenoxy/PEK-C blend. However, for the blends of copolymers containing 17, 24, and 28 mol % EEK, the hydrogen-bonding interactions become increasingly unfavorable and the self-association of the hydroxyl groups of phenoxy is preferable as the content of EEK units in the copolymer increases. The observed miscibility was interpreted qualitatively in terms of the mean-field approach. (C) 1996 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electroactive self-assembled monolayers (SAMs) containing viologen group are formed through the adsorption of thiol-functionalized viologen compound CH3(CH2)(9)V2+(CH2)(8)SH, where V2+ is N,N'-dialkylbipyridinium (i.e. a viologen group), onto gold electrodes from methanol/water solution and its electrochemical behavior is investigated ty Ac voltammetry and square wave voltammetry, which have the high sensitivity against background charging. The viologen SAM formed is a sub-monolayer and the normal potentials corresponding to the two successive one-electron transfer processes of the active centers (viologen) are -360 mV and -750 mV (vs. Ag/AgCl) in 0.1 mol/L phosphate buffer solutions (pH 6.96) respectively, and the standard electron transfer rate constant is 9.0 s(-1). The electrochemical behavior of this SAM in various solutions has been preliminarily discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

N-Methyl-N'-hexadecylviologen (C16MV) has been the subject of several electrochemical and spectroelectrochemical studies which characterized the species present in various redox states for C16MV monolayers on silver electrode surfaces. Both self-assembled monolayers (SA) and Langmuir-Blodgett (LB) transferred systems have been studied. These indicated inconsistencies regarding the presence or absence of splitting of the first reduction peak in its cyclic voltammogram (CV). The present study demonstrates the important influence of the specific anionic species present in the supporting electrolyte. Splitting may or may not take place, depending on the size and relative strength of the adsorption of specific anions contributed by the supporting electrolyte. Small, strongly adsorbing anions such as iodide produced peak splitting in the CV of C16MV monolayers; bulky but weakly adsorbing anions such as perchlorate may disrupt the ordered structure of monolayers but produce no splitting. Ancillary data provided by surface enhanced Raman spectroscopy (SERS) was consistent with the electrochemical measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic scaling and fractal behaviour of spinodal phase separation is studied in a binary polymer mixture of poly(methyl methacrylate) (PMMA) and poly(styrene-co-acrylonitrile) (SAN). In the later stages of spinodal phase separation, a simple dynamic scaling law was found for the scattering function S(q,t):S(q,t) approximately q(m)-3S approximately (q/q(m)). The possibility of using fractal theory to describe the complex morphology of spinodal phase separation is discussed. In phase separation, morphology exhibits strong self-similarity. The two-dimensional image obtained by optical microscopy can be analysed within the framework of fractal concepts. The results give a fractal dimension of 1.64. This implies that the fractal structure may be the reason for the dynamic scaling behaviour of the structure function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2(1972) 225; J. Geophys. REs. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed.