100 resultados para SECONDARY ELECTRONS
Resumo:
Short-range correlations of two-dimensional electrons in a strong magnetic field are shown to be triangular in nature well below half-filling, but honeycomb well above half-filling. The half-filling point is thus proposed, and qualitatively confirmed by three-body correlation calculations, to be a new type of disorder point where short-range correlations change character. A wavefunction study also suggests that nodes become unbound at half-filling. Evidence for incompressibility but deformability of the half-filling state earlier suggested by Fano, Ortolani and Tosatti, is also presented and found to be in agreement with recent experiments.
Resumo:
The electron cyclotron-resonance (CR) mass of quasi-two-dimensional electrons in GaN/AlxGa1-xN heterostructures is studied theoretically. The correction to the CR mass due to electron-phonon interaction is investigated, taking into account band nonparabolicity, the occupation effect, and the screening of the electron-phonon coupling. The dependence of the CR mass on the electron density and on the magnetic field strength is displayed in detail, and the calculated CR mass agrees well with a recent experiment. We found that the effective electron-phonon coupling strength in GaN heterostructures is reduced below the bulk value.
Resumo:
The magnetophonon resonance effect in the energy relaxation rate is studied theoretically for a quasi-two-dimensional electron gas in a semiconductor quantum well. An electron-temperature model is adopted to describe the coupled electron-phonon system. The energy relaxation time, derived from the energy relaxation rate, is found to display an oscillatory behavior as the magnetic-field strength changes, and reaches minima when the optical phonon frequency equals integer multiples of the electron cyclotron frequency. The theoretical results are compared with a recent experiment, and a qualitative agreement is found.
Resumo:
Tunneling escape of electrons from quantum wells (QWs) has systematically been studied in an arbitrarily multilayered heterostructures, both theoretically and experimentally. A wave packet method is developed to calculate the bias dependence of tunneling escape time (TET) in a three-barrier, two-well structure. Moreover, by considering the time variation of the band-edge profile in the escape transient, arising from the decay of injected electrons in QWs, we demonstrate that the actual escape time of certain amount of charge from QWs, instead of single electron, could be much longer than that for a single electron, say, by two orders of magnitude at resonance. The broadening of resonance may also be expected from the same mechanism before invoking various inhomogeneous and homogeneous broadening. To perform a close comparison between theory and experiment, we have developed a new method to measure TET by monitoring transient current response (TCR), stemming from tunneling escape of electrons out of QWs in a similar heterostructure. The time resolution achieved by this new method reaches to several tens ns, nearly three orders of magnitude faster than that by previous transient-capacitance spectroscopy (TCS). The measured TET shows an U-shaped, nonmonotonic dependence on bias, unambiguously indicating resonant tunneling escape of electrons from an emitter well through the DBRTS in the down-stream direction. The minimum value of TET obtained at resonance is accordance with charging effect and its time variation of injected electrons. A close comparison with the theory has been made to imply that the dynamic build-up of electrons in DBRTS might play an important role for a greatly suppressed tunneling escape rate in the vicinity of resonance.
Resumo:
By considering the time variation of band-edge profile arising from the decay of injected charge in quantum wells(QWs), we employ a wave packet method to verify that the actual escape time of certain amount of electrons from QWs could be much larger than that for a single electron. The theoretical result is also in agreement with our measurement of escape time, performed by using a newly developed method--transient current response.
Resumo:
To investigate the hot electrons in highly charged electron cyclotron resonance (ECR) plasma, Bremsstrahlung radiations were measured on two ECR ion sources at the Institute of Modern Physics. Used as a comparative index of the mean energy of the hot electrons, a spectral temperature, Tspe, is derived through a linear fitting of the spectra in a semi-logarithmic representation. The influences of the external source parameters, especially the magnetic configuration, on the hot electrons are studied systematically. This study has experimentally demonstrated the importance of high microwave frequency and high magnetic field in the electron resonance heating to produce a high density of hot electrons, which is consistent with the empirical ECR scaling laws. The experimental results have again shown that a good compromise is needed between the ion extraction and the plasma confinement for an efficient production of highly charged ion beams. In addition, this investigation has shown that the correlation between the mean energy of the hot electrons and the magnetic field gradient at the ECR is well in agreement with the theoretical models.中文摘要:ECR(电子回旋共振)离子源是产生稳定的强流多电荷态离子束流最有效装置。全永磁 ECR 离子源因其独特的特点为很多中小型多电荷态离子束流实验平台与离子注入机等系统所采用,为后者产生重复性好、稳定性强的多电荷态离子束流。本文着重论述了中国科学院近代物理研究所研制的几台全永磁多电荷态ECR离子源及其特性与典型性能,如能产生强流高电荷态离子束流的高性能全永磁离子源LAPECR2,能产生强流中低电荷态离子束流的LAPECR1,能产生多电荷态重金属离子束流的LAPECR1-M等。这些性能稳定的离子源为提高近代物理研究所相关试验平台的性能提供了关键的束流品质保障。