62 resultados para Robotic Excavation
Resumo:
The Gangxi oil field has reached a stage of high water production. The reservoir parameters, such as reservoir physical characteristics, pore structure, fluid, have obviously changed. This thesis therefore carries out a study of these parameters that control reservoir characteristics, physical and chemical actions that have taken place within the reservoirs due to fluid injection, subsequent variations of reservoir macroscopic physical features, microscopic pore structures, seepages, and formation fluid properties. This study rebuilds a geologic model for this oil field, establishes a log-interpreting model, proposes a methodology for dealing with large pore channels and remnant oil distribution, and offers a basis for effective excavation of potential oil, recovery planning, and improvement of water-injection techniques. To resolve some concurrent key problems in the process of exploration of the Gangxi area, this thesis carries out a multidisciplinary research into reservoir geology, physical geography, reservoir engineering, and oil-water well testing. Taking sandstone and flow unit as objects, this study establishes a fine geologic model by a quantificational or semi-quantificational approach in order to understand the remnant oil distribution and the reservoir potential, and accordingly proposes a plan for further exploration. By rebuilding a geological model and applying reservoir-engineering methods, such as numerical simulation, this thesis studies the oil-water movement patterns and remnant-oil distribution, and further advances a deployment plan for the necessary adjustments and increase of recoverable reserves. Main achievements of this study are as follows: 1. The Minghazhen Formation in the Gangxi area is featured by medium-sinuosity river deposits, manifesting themselves as a transitional type between typical meandering and braided rivers. The main microfacies are products of main and branch channels, levee, inter-channel overflows and crevasse-splay floodplains. The Guantao Group is dominantly braided river deposit, and microfacies are mainly formed in channel bar, braided channel and overbank. Main lithofacies include conglomerate, sandstone, siltstone and shale, with sandstone facies being the principal type of the reservoir. 2. The reservoir flow unit of the Gangxi area can be divided into three types: Type I is a high-quality heterogeneous seepage unit, mainly distributed in main channel; Type II is a moderate-quality semi-heterogeneous seepage unit, mainly distributed in both main and branch channels, and partly seen within inter-channel overflow microfacies; Type III is a low-quality, relatively strong heterogeneous seepage unit, mainly distributed in inter-channel overflow microfacies and channel flanks. 3. Flow units and sedimentary microfacies have exerted relatively strong controls on the flowing of underground oil-water: (1) injection-production is often effective in the float units of Type I and II, whilst in the same group of injection-production wells, impellent velocity depends on flow unit types and injection-production spacing; (2) The injection-production of Type III flow unit between the injection-production wells of Type I and II flow units, however, are little effective; (3) there can form a seepage shield in composite channels between channels, leading to inefficient injection and production. 4. Mainly types of large-scale remnant-oil distribution are as follows: (1) remnant oil reservoir of Type III flow unit; (2) injection-production well group of remnant oil area of Type III flow unit; (3) remnant oil reservoirs that cannot be controlled by well network, including reservoir featured by injection without production, reservoir characterized by production without injection, and oil reservoir at which no well can arrive; (4) remnant oil area where injection-production system is not complete. 5. Utilizing different methods to deal with different sedimentary types, sub-dividing the columns of up to 900 wells into 76 chronostratigraphic units. Four transitional sandstone types are recognized, and contrast modes of different sandstone facies are summarized Analyzing in details the reservoirs of different quality by deciphering densely spaced well patterns, dividing microscopic facies and flow units, analyzing remnant oil distribution and its effect on injection-production pattern, and the heterogeneity. Theory foundation is therefore provided for further excavation of remnant oil. Re-evaluating well-log data. The understanding of water-flood layers and conductive formations in the Gangxi area have been considerably improved, and the original interpretations of 233 wells have changed by means of double checking. Variations of the reservoirs and the fluid and formation pressures after water injection are analyzed and summarized Studies are carried out of close elements of the reservoirs, fine reservoir types, oil-water distribution patterns, as well as factors controlling oil-gas enrichment. A static geological model and a prediction model of important tracts are established. Remaining recoverable reserves are calculated of all the oil wells and oil-sandstones. It is proposed that injection-production patterns of 348 oil-sandstones should be adjusted according to the analysis of adaptability of all kinds of sandstones in the injection-production wells.
Resumo:
Guangxi Longtan Hydropower Station is not only a representative project of West Developing and Power Transmission from West to East in China, but also the second Hydropower Station to Three Gorges Project which is under construction in China. There are 770 X 104m3 creeping rock mass on the left bank slope in upper reaches, in which laid 9 water inlet tunnels and some underground plant buildings. Since the 435m high excavated slope threatens the security of the Dam, its deformation and stability is of great importance to the power station.Based on the Autodesk Map2004, Longtan Hydropower Station Monitoring Information System on Left Bank has been basically finished on the whole. Integrating the hydropower station monitoring information into Geographic Information System(GIS) environment, managers and engineers can dynamically gain the deformation information of the slop by query the symbols. By this means, designers can improve the correctness of analysis, and make a strategic and proper decision. Since the system is beneficial to effectively manage the monitoring-data, equitably save the cost of design and safe construction, and decrease the workload of the engineers, it is a successful application to the combination of hydropower station monitoring information management and computer information system technology.At the same time, on the basis of the geological analysis and rock mass toppling deformation and failure mechanism analysis of Longtan engineering left bank slope, the synthetic space-time analysis and influence factors analysis on the surface monitoring data and deep rock mass monitoring data of A-zone on left bank slope are carried on. It shows that the main intrinsic factor that effects the deformation of Zone A is the argillite limestone interbedding toppling structure, and its main external factors are rain and slope excavation. What's more, Degree of Reinforcement Demand(DRD) has been used to evaluate the slop reinforce effect of Zone A on left bank according to the Engineering Geomechanics-mate-Synthetics(EGMS). The result shows that the slop has been effective reinforced, and it is more stable after reinforce.At last, on the basis of contrasting with several forecast models, a synthetic forecast GRAV model has been presented and used to forecast the deformation of zone A on left bank in generating electricity period. The result indicates that GRAV model has good forecast precision, strong stability, and practical valuable reliability.