181 resultados para Reynolds stress


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elastic plane problem of a rigid line inclusion between two dissimilar media was considered. By solving the Riemann-Hilbert problem, the closed-form solution was obtained and the stress distribution around the rigid line was investigated. It was found that the modulus of the singular behavior of the stress remains proportional to the inverse square root of the distance from the rigid line end, but the stresses possess a pronounced oscillatory character as in the case of an interfacial crack tip.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A regular perturbation technique is suggested to deal with the problem of one dimensional stress wave propagation in viscoelastic media with damage. Based upon the first order asymptotic solution obtained, the characteristics of wave attenuation are studied. In fact, there exist three different time-dependent phenomena featuring the dynamic response of the materials, the first expressing the characteristics of wave propagation, the second indicating the innate effect of visco-elastic matrix and the third coming from the time dependent damage. The comparision of first order asymptotic solution with the numerical results calculated by a finite difference procedure shows that the perturbation expansion technique may offer a useful approach to the problem concerned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, new formulae of a class of stress intensity factors for an infinite plane with two collinear semi-infinite cracks are presented. The formulae differ from those gathered in several handbooks used all over the world. Some experiments and finite element calculations have been developed to verify the new formulae and the results have shown its reliability. Finally, the new formulae and the old are listed to show the differences between them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the conformal mapping method is used to solve the plane problem of an infinite plate containing a central lip-shaped notch subjected to biaxial loading at a remote boundary or a surface uniform pressure on the notch. The stress intensity factors KI and KII are obtained by the derived complex stress functions. The simple analytical expressions can be applied to the situation of cracks originating from a circular or an elliptical notch. The plastic zone sizes for such notch cracks are subsequently evaluated in light of the Dugdale strip yield concept. The results are consistent with available numerical data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ten kinds of the simplified Navier-Stokes equations (SNSE) are reviewed and also used to calculate the Jeffery-Hamel flow as well as to analyze briefly the seven kinds of flows to which the exact solutions of the complete Navier-Stokes equations (CNSE) have been found. Analysis shows that the actual differences among the solutions of the different SNSE can go beyond the range of the order of magnitude of Re-1/2 and result even in different flow patterns, therefore, how to choose the viscous terms included in the SNSE is worthy of notice where Re=S∞u∞ L/μ∞ is the Reynolds numbers. For the aforesaid eight kinds of flows, the solutions to the inner-outer-layer-matched SNSE and to the thin-layer-2-order SNSE agree completely with the exact solutions to CNSE. But the solutions to all the other SNSE are not completely consistent with the exact solutions to CNSE and not a few of them are actually the solutions of the classical boundary layer theory. The innerouter-layer-matched SNSE contains the shear stress causing angular displacement of the inormal axis with respect to the streamwise axis and the normal stress causing expansion-contraction in the direction of the normal axis and the viscous terms being of the order of magnitude of the normal stress; and it can also reasonably treat the inertial terms as well as the relation between the viscous and inertial terms. Therefore, it seems promising in respects of both mechanics and mathematics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of inhomogeneous element is proposed and the formulations of the inhomogeneous isoparametric elements for stress analysis of four kinds of problems are derived. As an example of applications of the inhomogeneous elements, the stress distribution in a cone-like composite syntheticrope termination is calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

讨论了液滴热毛细迁移的空间实验装置,该实验是中国神舟号飞船中的一个项目。与国际上同类装置比较,它具有不需要宇航员直接操作,领先程序自动控制及遥科学手段完成全部科学实验的能力。它不仅能完成大Reynolds数的液滴迁移实验,而且在这类空间装置上使用了等厚型光学干涉系统。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

近年来,Rubinstein和Barton利用Yakhot和Orszag湍流重正化群方法推导非线性Reynolds应力模型,但是他们分析计算过程中存在着一些不自洽的地方.文中利用重正化群方法,对Reynolds应力的数学表达式作二阶微扰展开,从理论上推导得到非线性Reynolds应力模型,其数学形式与从量纲分析和数学物理性质的合理性讨论得到的通用模型形式完全相同,另外从理论上计算了各待定湍流常数.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation will be performed on the thermocapillary motion of two bubbles in Chinese return-satellite. The experiment will study the migration process of bubble caused by thermocapillary effect in microgravity environment, and their interaction between two bubbles. The bubble is driven by the thermocapillary stress on the surface on account on the variation of the surface tension with temperature. The interaction between two bubbles becomes significant as the separation distance between them is reduced drastically so that the bubble interaction has to be considered. Recently, the problem has been discussed on the method of successive reflections, and accurate migration velocities of two arbitrarily oriented bubbles were derived for the limit of small Marangoni and Reynolds numbers. Numerical results for the migration of the two bubbles show that the interaction between two bubbles has significant influence on their thermocapillary migration velocities with a bubble approaching another. However, there is a lack of experimental validate for the theoretic results. Now the experimental facility is designed for experimenting time after time. A cone-shaped top cover is used to expel bubble from the cell after experiment. But, the cone-shaped top cover can cause temperature uniformity on horizontal plane in whole cell. Therefore, a metal board with multi-holes is fixed under the top cover. The board is able to let the temperature distribution on the board uniform because of their high heat conductivity, and the bubble can pass through it. In the system two bubbles are injected into the test cell respectively by two sets of cylinder. And the bubbles sizes are controlled by two sets of step-by-step motor. It is very important problem that bubble can be divorced from the injecting mouth in microgravity environment. Thus, other two sets of device for injecting mother liquid were used to push bubble. The working principle of injecting mother liquid is to utilize pressure difference directly between test cell and reservoir

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high Reynolds number flow contains a wide range of length and time scales, and the flow domain can be divided into several sub-domains with different characteristic scales. In some sub-domains, the viscosity dissipation scale can only be considered in a certain direction; in some sub-domains, the viscosity dissipation scales need to be considered in all directions; in some sub-domains, the viscosity dissipation scales are unnecessary to be considered at all. For laminar boundary layer region, the characteristic length scales in the streamwise and normal directions are L and L Re-1/ 2 , respectively. The characteristic length scale and the velocity scale in the outer region of the boundary layer are L and U, respectively. In the neighborhood region of the separated point, the length scale l<Reynolds numbers RDxi between different cells in Navier-Stokes (NS) equations computations for high Reynolds number flows, an idea of solving the conservation equations for discrete cells was proposed and named the discrete fluid dynamics (DFD) algorithm. Analysis shows that the basic conservative equations for discrete cells are the Euler equations, NS- and diffusion parabolized (DP) NS equations. In this paper, a new multiscale-domain decomposition method is developed for the high Reynolds number flow. First, the whole domain is decomposed to different sub-domains with the different characteristic scales. Then the different dominant equation of all sub-domains is defined according to the diffusion parabolized (DP) theory of viscous flow. Finally these different equations are solved simultaneously in whole computational region. For numerical tests of high Reynolds numerical flows, two-dimensional supersonic flows over rearward and frontward steps as well as an interaction flow between shock wave and boundary layer were solved numerically. The pressure distributions and local coefficients of skin friction on the wall are given. The numerical results obtained by the multiscale-domain decomposition algorithm are well agreement with those by NS equations. Comparing with the usual method of solving the Navier-Stokes equations in the whole flow, under the same numerical accuracy, the present multiscale domain decomposition method decreases CPU consuming about 20% and reflects the physical mechanism of practical flow more accurately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the transient thermal stress field in wall-shape metal part during laser direct forming, a FEM model basing on ANSYS is established, and its algorithm is also dealt with. Calculation results show that while the wall-shape metal part is being deposited, in X direction, the thermal stress in the top layer of the wall-shape metal part is tensile stress and in the inner of the wall-shape metal part is compressive stress. The reason causing above-mentioned thermal stress status in the wall-shape metal part is illustrated, and the influence of the time and the processing parameters on the thermal stress field in wall-shape metal part is also studied. The calculation results are consistent with experimental results in tendency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tension and compression of single-crystalline silicon nanowires (SiNWs) with different cross-sectional shapes are studied systematically using molecular dynamics simulation. The shape effects on the yield stresses are characterized. For the same surface to volume ratio, the circular cross-sectional SiNWs are stronger than the square cross-sectional ones under tensile loading, but reverse happens in compressive loading. With the atoms colored by least-squares atomic local shear strain, the deformation processes reveal that the failure modes of incipient yielding are dependent on the loading directions. The SiNWs under tensile loading slip in {111} surfaces, while the compressive loading leads the SiNWs to slip in the {110} surfaces. The present results are expected to contribute to the design of the silicon devices in nanosystems.