77 resultados para Rede neural auto-organizáveis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

MnZn-ferrite/SiO2 nanocomposites with different silica content were successfully fabricated by a novel modified sol-gel auto-combustion method using citric acid as a chelating agent and tetraethyl orthosilicate (TEOS) as the source of silica matrix. The auto-combustion nature of the dried gel was studied by X-ray diffraction (XRD), Infrared spectra (IR), thermogravimetry (TG) and differential thermal analysis (DTA). Transmission electron microscope (TEM) observation shows that the MnZn-ferrite particles are homogeneously dispersed in silica matrix after auto-combustion of the dried gels. The magnetic properties vary with the silica content. The transition from the ferromagnetic to paramagnetic state is observed by Mossbauer spectra measurement with the increasing silica content. Vibrating sample magnetometer (VSM) shows that the magnetic properties of Mn0.65Zn0.35Fe2O4/SiO2 nanocomposites strongly depend on the silica content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of nanocrystalline W-type hexaferrites Ba(CoxZn1-x)(2)Fe16O27 powders by sol-gel auto-combustion method has been investigated. The thermal decomposition process of dried gel was studied by thermogravimetry (TG), differential thermal analysis (DTA) and infrared spectra (IR). The structural and magnetic properties of resultant particles were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM), and vibrating sample magnetometer (VSM). The results reveal that the dried gel exhibits auto-combustion behavior. After combustion, pure nanocrystalline W-type hexaferrite phase starts to appear at the calcination temperature of 800 degrees C. The crystallinity and the grain size increase at higher temperature. The saturation magnetization and coercivity clearly depend on calcination temperature and Co content X.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new topological indices A(x1)-A(x3) suggested in our laboratories were applied to the study of structure-property relationships between color reagents and their color reactions with yttrium. The topological indices of twenty asymmetrical phosphone bisazo derivatives of chromotropic acid were calculated. The work shows that QSPR can be used as a novel aid to predict the molar absorptivities of color reactions and in the long term to be helpful tool in-color reagent design. Multiple regression analysis and neural network were employed simultaneously in this study. The results demonstrated the feasibility and the effectiveness of the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The investigations of classification on the valence changes from RE3+ to RE2+ (RE = Eu, Sm, Yb, Tm) in host compounds of alkaline earth berate were performed using artificial neural networks (ANNs). For comparison, the common methods of pattern recognition, such as SIMCA, KNN, Fisher discriminant analysis and stepwise discriminant analysis were adopted. A learning set consisting of 24 host compounds and a test set consisting of 12 host compounds were characterized by eight crystal structure parameters. These parameters were reduced from 8 to 4 by leaps and bounds algorithm. The recognition rates from 87.5 to 95.8% and prediction capabilities from 75.0 to 91.7% were obtained. The results provided by ANN method were better than that achieved by the other four methods. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial neural network(ANN) approach was applied to classification of normal persons and lung cancer patients based on the metal content of hair and serum samples obtained by inductively coupled plasma atomic emission spectrometry (ICP-AES) for the two groups. This method was verified with independent prediction samples and can be used as an aiding means of the diagnosis of lung cancer. The case of predictive classification with one element missing in the prediction samples was studied in details, The significance of elements in hair and serum samples for classification prediction was also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative structure-activity/property relationships (QSAR/QSPR) studies have been exploited extensively in the designs of drugs and pesticides, but few such studies have been applied to the design of colour reagents. In this work, the topological indices A(x1)-A(x3) suggested in this laboratory were applied to multivariate analysis in structure-property studies. The topological indices of 43 phosphone bisazo derivatives of chromotropic acid were calculated. The structure-property relationships between colour reagents and their colour reactions with cerium were studied using A(x1-Ax3) indices with satisfactory results. The purpose of this work was to establish whether QSAR can be used to predict the contrasts of colour reactions and in the longer term to be a helpful tool in colour reagent design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quantitative structure-property study has been made on the relationship between molar absorptivities (epsilon) of asymmetrical phosphone bisazo derivatives of chromotropic acid and their color reactions with cerium by multiple regression analysis and neural network. The new topological indices A(x1) - A(x3) suggested in our laboratory and molecular connectivity indices of 43 compounds have been calculated. The results obtained from the two methods are compared. The neural network model is superior to the regression analysis technique and gave a prediction which was sufficiently accurate to estimate the molar absorptivities of color reagents during their color reactions with cerium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the molecular connectivity indices and the electronic charge parameters of forty-eight phenol compounds nave been calculated. and applied for studying the relationship between partition coefficients and structure of phenol compounds. The results demonstrate that the properties of compounds can be described better with selective parameters, and the results obtained by neural network are superior to that by multiplle regression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the new topological indices A(x1)-A(x3) suggested in our laboratory and molecular connectivity indices have been applied to multivariate analysis in structure-property studies. The topological indices of twenty asymmetrical phosphono bisazo derivatives of chromotropic acid have been calculated. The structure-property relationships between colour reagents and their colour reactions with ytterbium have been studied by A(x1)-A(x3) indices and molecular connectivity indices with satisfactory results. Multiple regression analysis and neural networks were employed simultaneously in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative structure-toxicity models were developed that directly link the molecular structures of a et of 50 alkYlated and/or halogenated phenols with their polar narcosis toxicity, expressed as the negative logarithm of the IGC50 (50% growth inhibitor

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of phenoloxidase during amphioxus embryogenesis was spectrophotometrically and histochemically studied for the first time in the present study. It was found that (1) PO activity initially appeared in the general ectoderm including the neural ectoderm and the epidermal ectoderm at the early neurala stage but not in the mesoderm or the endoderm, and (2) PO activity disappeared in the neural plate cells but remained unchanged in the epidermal cells when the neural plate was morphologically quite distinct from the rest of the ectoderm. It is apparent that PO could serve as a marker enzyme for differentiation of the neural ectoderm from the epidermal ectoderm during embryonic development of amphioxus. (C) 2000 Elsevier Science ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new algorithm based on the multiparameter neural network is proposed to retrieve wind speed (WS), sea surface temperature (SST), sea surface air temperature, and relative humidity ( RH) simultaneously over the global oceans from Special Sensor Microwave Imager (SSM/I) observations. The retrieved geophysical parameters are used to estimate the surface latent heat flux and sensible heat flux using a bulk method over the global oceans. The neural network is trained and validated with the matchups of SSM/I overpasses and National Data Buoy Center buoys under both clear and cloudy weather conditions. In addition, the data acquired by the 85.5-GHz channels of SSM/I are used as the input variables of the neural network to improve its performance. The root-mean-square (rms) errors between the estimated WS, SST, sea surface air temperature, and RH from SSM/I observations and the buoy measurements are 1.48 m s(-1), 1.54 degrees C, 1.47 degrees C, and 7.85, respectively. The rms errors between the estimated latent and sensible heat fluxes from SSM/I observations and the Xisha Island ( in the South China Sea) measurements are 3.21 and 30.54 W m(-2), whereas those between the SSM/ I estimates and the buoy data are 4.9 and 37.85 W m(-2), respectively. Both of these errors ( those for WS, SST, and sea surface air temperature, in particular) are smaller than those by previous retrieval algorithms of SSM/ I observations over the global oceans. Unlike previous methods, the present algorithm is capable of producing near-real-time estimates of surface latent and sensible heat fluxes for the global oceans from SSM/I data.